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examined how subjects plan speeded reaching movements when the
precise target of the movement is not known at movement onset.
Before each reach, subjects were given only a probability distribution
on possible target positions. Only after completing part of the move-
ment did the actual target appear. In separate experiments we varied
the location of the mode and the scale of the prior distribution for
possible targets. In both cases we found that subjects made use of
prior probability information when planning reaches. We also devised
two tests (Composite Benefit and Row Dominance tests) to determine
whether subjects’ performance met necessary conditions for optimal-
ity (defined as maximizing expected gain). We could not reject the
hypothesis of optimality in the experiment where we varied the mode
of the prior, but departures from optimality were found in response to
changes in the scale of prior distributions.

I N T R O D U C T I O N

Performance in speeded-reaching tasks is often assessed by
examining movements toward a spatial target at a known
position in space. The target is visible before the start of
movement and the key task for the motor system is to plan the
most effective movement possible to reach the target (e.g.,
Körding and Wolpert 2004; Sabes and Jordan 1997; Todorov
and Jordan 2002; Trommershäuser et al. 2003a,b). Other re-
searchers have demonstrated that the motor system can update
a planned movement in response to unanticipated changes in
position, velocity, and visual properties of a fixed target (Bren-
ner and Smeets 2004; Elliott et al. 1999; Komilis et al. 1993;
Pélisson et al. 1986; Saunders and Knill 2004; Schmidt 2002).
In all of these studies, a specific target is visible before
movement onset even if the subject is fully aware it may
unpredictably change location during the actual movement.

It is conceptually difficult to separate movement planning
from movement execution in such tasks because the movement
plan (including possible compensation for changes in target
location) would likely be fully formed before movement onset
(e.g., Bédard and Proteau 2004; Gribble et al. 2003; Heath
et al. 2004; Rabin and Gordon 2004; Saunders and Knill 2004;
Torres and Zipser 2004; Vindras and Viviani 2002). There are,
however, natural movements for which there is substantial
initial uncertainty concerning the final spatial goal of the
movement, and the initial part of the movement must therefore
be planned relative to the uncertainty of the goal information
available before movement. In water polo, for example, an
attacker must often plan and initiate a shot on the goal while a
defender is simultaneously attempting to block the shot. Nei-

ther attacker nor defender can anticipate with certainty the
actions of the other at movement onset and each can potentially
react to the other’s movement during the brief duration of the
attack. The initial movement planning of either player should
allow for a range of possible continuations that have a high
probability of producing a successful outcome, each consistent
with biophysical constraints imposed by the joints and the
maximum torque-generating capabilities of the muscles. There
will be an optimal initial trajectory that can be planned by the
attacker based on (possibly) imperfect knowledge of the loca-
tion of the goal, the biophysical limits of the motor system,
prior information about the most likely defensive movements
of the opponent, and the likelihood of hitting the goal given
initial positions, velocities, accelerations, and so forth of the
arm’s initial trajectory.

Of course, whatever the attacker’s eventual choice, the
ultimate outcome of the chosen movement plan is to define the
probability of success. The optimal movement plan would
therefore be the one that maximizes this probability. In what
follows, we have two major goals. The first is to test whether
subjects are capable of modifying aim points, velocities, and so
forth during the initial portion of a reach in response to
probability information acquired before reach initiation. Given
that this is the case, we will test subjects’ performance to
determine whether it meets necessary conditions for optimality
(the Composite Benefit criterion, subsequently described, and
the Row Dominance criterion, described in RESULTS), where
optimal performance is defined to be performance that maxi-
mizes expected gain.

We will first describe the task and our theoretical framework
for a simplified case. In this case, we present subjects with two
possible targets (Fig. 1, gray rectangles). One of the targets is
the correct target but, at the start of the movement, the subject
does not know which. Once the subject’s fingertip has traveled
one third of the way to the target array (and passed through an
invisible trigger plane, drawn as a dashed horizontal line in
Fig. 1), the correct target is indicated visually and only after
this point can the subject know with certainty which target
carries a reward. The subject receives a reward by touching the
correct target within 600 ms of movement onset and is penal-
ized for slower (�600 ms) movements. This 600 ms includes
the time needed to reach the trigger plane and also the time
needed to travel from the trigger plane to the display screen
containing the targets. Before the start of each trial, the avail-
able information defines the prior probabilities �A and �B that
TA or TB is the correct target (�A � �B � 1). This prior
probability distribution is all the target information that the
subject has to plan the initial part of the movement from the
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starting point to the trigger plane where the location of the
target will be learned.

How should the ideal movement planner plan such a move-
ment, particularly during the initial part of the movement up to
the trigger plane? First, we consider special cases. Suppose that
�A is 1 (and therefore �B is 0). Here, it is certain that TA is the
correct target and the subject can simply plan an optimal
movement to TA (a determinate target). We refer to the
outcome of movement planning as a movement plan or strat-
egy, denoted s. The ideal movement planner should adopt a
movement plan sA that leads to a mean spatial trajectory such
as the one labeled �A that ends at TA and that maximizes the
probability of reaching the target within 600 ms and earning
the reward. We refer to such a plan as a simple movement plan
and the resulting reaches and trajectories as simple reaches and
simple movement trajectories. A movement planner must spec-
ify not just a spatial trajectory but also how the trajectory
evolves across time. For simplicity in presentation, however,
we defer discussion of planning movement velocity or higher
temporal derivatives.

We denote the probability of acquiring TA (a hit on TA,
denoted HA) with this simple movement plan sA as p(HA � sA).
This is the probability of earning the reward with this trajec-
tory. The ideal movement planner would pick the simple

movement plan that maximizes this probability. Similarly, if
the ideal movement planner knew that the correct target was TB
at the beginning of the trial, then a simple movement plan sB
would be adopted, leading to a mean trajectory �B terminating
at TB. The probability of earning the reward with this plan is
p(HB � sB). The two mean trajectories corresponding to these
two simple movement plans are marked by dashed curves in
Fig. 1.

In either of these cases, the subject is simply asked to
optimize movement to a determinate target. In particular, the
target information that the subject receives after passing
through the trigger plane is redundant and the optimal move-
ment planner will ignore the trigger plane and the alternative
target location in planning simple movements to determinate
targets.

Suppose now that the ideal movement planner is told that �A
is 0.7 (and therefore �B � 0.3); these are probabilistic targets.
When the hand passes through the trigger plane, either TA or TB
will be revealed as the actual target. How should the ideal
movement planner plan the resulting composite movement s
(where a composite movement is one that has multiple possible
completions, in this case one that can be completed toward TA
or TB, with mean trajectory ��A or ��B; Fig. 1)?1 In particular,
how should the subject plan the initial phase of the composite
movement (extending up to the trigger plane)? A movement
planner could simply plan a simple movement sA to TA (with
mean trajectory �A), given that TA is more likely, ignoring the
information available at the trigger plane and ignoring TB even
when it is the correct target. The probability of earning the
reward (acquiring target TA) is then p(HA � sA)�A. Alternatively,
the initial trajectory to the trigger plane could be planned such
that it intersects the trigger plane between the intersection
points of the simple trajectories to TA and TB. The solid
trajectory in Fig. 1 illustrates a possible initial trajectory
intersecting the trigger plane at such an intermediate location.
The initial portion of the composite movement can continue as
trajectory ��A to TA or trajectory ��B to TB, both drawn as solid
lines in Fig. 1. As drawn, the trajectory of the composite
movement leading to TA deviates less from the optimal simple
trajectory to TA, reflecting the possibility that the subject may
choose to favor the more likely target. In planning this trajec-
tory, the movement planner has to allow for the cost (if any) of
registering the correct target information at the trigger plane
and the cost of updating the movement plan to now move
toward the correct target.

Composite benefit criterion

The ultimate consequence of choosing a composite move-
ment plan s is to affect the probabilities of hitting either target,
TA or TB, when it is the correct continuation of the initial
portion of s. We denote by p(HA � s �TA) the probability of
hitting target TA on trials in which TA is the target and
composite movement plan s is used; we similarly define
p(HB � s �TB). We also assume that there is zero probability of
hitting nontarget TA when TB is the target [i.e., p(HA � s �TB) �
0], and vice versa, given that when the true target is revealed

1 To be clear, a composite movement plan is a composite in the sense that
it is composed of an initial phase and an end phase, where the end phase cannot
be planned with certainty until the initial phase is completed. It is not a
weighted mixture or superposition of simple movement plans.

FIG. 1. Thought experiment. Subject attempts to touch small targets on a
screen. Movement must be completed within a short time limit (�600 ms). On
each trial, there are 2 possible targets, TA or TB, one of which will be the actual
target for that trial. At the start of the trial, the subject knows only that A will
be the true target for that trial with probability �A and B will be the actual
target with probability �B (�A � �B � 1). After completing part of movement
to the screen, the subject learns which of the possible targets A or B is the
actual target. If �A � 1 then the subject knew that A would be the target on that
trial and could simply plan a movement to A. Information as to target identity
provided in mid-movement is redundant (similarly if �B � 1). However, if, for
example, �A is 0.7 (and thus �B is 0.3), then the subject may plan a
“composite” movement plan that has 2 parts. Initial portion of the reach can be
planned with certainty before movement initiation, here given by the trajectory
indicated by the bold solid line. Because it depends on the target information
gained when crossing the trigger plane, the final portion of the reach cannot be
planned with certainty before reach initiation. Here, the final portion of the
composite reach continues with either mean trajectory ��A or ��B after the
identity of the target is known.
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the others are removed from the display. Then, the overall
probability of earning a reward on each trial is

p�Reward�s� � p�HA�s � TA��A � p�HB�s � TB��B (1)

Note that p(HA � s �TA) and p(HB � s �TB) need not sum to 1; a
subject could perform poorly both when TA is the target and
also when TB is the target. We expect that p(HA � s �TA) �
p(HB � s �TB) in our example because the former is the proba-
bility of hitting TA with a movement plan likely to be biased
toward the more probable target location, TA. A composite plan
s is preferable to executing a simple plan to one of the two
targets when

p�HA�s � TA��A � p�HB�s � TB��B

� max � p�HA�sA � TA��A, p�HB�sB � TB��B 	 (2)

In the experiments we report, we will use N targets. Equation
1 then becomes

p�Reward�s� � �
j�1

N

p�Hj
s � Tj��j (3)

and the composite plan s is preferable to any simple plan only
when

�
j�1

N

p�Hj
s � Tj��j � max � p�H1
s1 � T1��1, . . . , p�HN
sN � TN��N 	 (4)

We refer to the condition defined by Eq. 4 as the Composite
Benefit criterion. It is a necessary condition for optimal move-
ment planning.

Composite-movement planning

The spatial trajectory is not the only aspect of the movement
plan that the planner can consider in formulating a composite
movement plan. Recall that the reach must be completed
within 600 ms of its initiation or no reward is earned and a
penalty is imposed. Given that, with the composite plan s, the
subject must either accelerate left to TA or right to TB after
reaching the trigger plane, it may be preferable to reach the
trigger plane traveling at a lower speed than if following either
of the simple trajectories to reduce the torques required to
accomplish trajectory adjustments. However, taking a longer
time to reach the trigger plane or passing through the trigger
plane at low speed eats into the time available to complete the
movement, and the optimal trade-off between reduced time and
the noise from increased torque production is likely to be
complex. Regardless of the details of the trade-off, subjects
may choose to vary not only the spatial path but also the
velocity profile of the path to obtain the highest total reward
possible.

What does the motor system plan when planning composite
movements? The initial phase of the reach cannot be pro-
grammed as a function of the location of a target as is typically
assumed (e.g., Abrams et al. 1990; Woodworth 1899) but the
subject can plan the motor state of the fingertip (location,
orientation, velocity, acceleration, etc.) as it passes through the
trigger plane. We seek to determine whether and how the
subject alters this planned motor state in response to changes in
the prior probabilities of the targets. We discuss next the
possible responses to specific changes in the prior distribution.

Predictions

In planning the initial part of a movement, we expect
subjects to select both a movement goal for the initial move-
ment and a suitable control law for its implementation. In our
task, subjects cannot plan an optimal reach to the unknown
target location before movement onset. However, they can plan
the initial portion of the reach to produce a state of the motor
system at the trigger plane that is maximally advantageous for
later acquisition of the target (and reward) once it is known.
We do not know the form of the initial movement plan and the
interpretation of our experiments does not require this knowl-
edge. Participants may initially plan a movement only through
the trigger plane or they may choose an initial goal location on
the display screen and an intended speed of movement, and
change that goal after the target is displayed. Whatever the
form and goal of the initial plan, the plan and its implementa-
tion determine the state of the fingertip when it passes through
the trigger plane (its position, velocity, acceleration, etc.), and
it is these kinematic variables that we measure and relate to
performance in the task. The state of the fingertip at the trigger
plane determines the probability of subsequent target acquisi-
tion (thereby also determining expected gain). We will there-
fore equate the outcome of movement planning with consis-
tent, patterned changes in the state of the fingertip at the trigger
plane.

We make two conjectures concerning how an ideal subject
will perform.

1 Changes in the location of the highest probability target
should serve to shift the location at which the fingertip passes
through the trigger plane. If the fingertip passes through the
trigger plane at a horizontal location cx when the highest
probability target is at the center of the set of possible target
locations, then a leftward/rightward shift in the location of the
highest probability target would shift cx leftward/rightward.
This possibility is tested by providing subjects in a first
(“Location”) experiment with a series of probability distribu-
tions that differ in the location of their mode. Because of the
complexity of our task, we cannot compute the optimal move-
ment plan. Yet, it is possible to test whether human perfor-
mance is consistent with an optimal solution using a test based
on the Composite Benefit criterion described earlier, and a
second test based on an additional necessary condition for
optimality, the Row Dominance criterion, subsequently ex-
plained. We refer to the tests based on these two criteria as the
Composite Benefit and the Row Dominance tests, respectively.
Analogues of these tests, particularly the latter, should be
useful in comparing human to ideal performance in a wide
variety of movement tasks where generating precise predic-
tions of quantitatively optimal performance is infeasible, given
the complexities of modeling movement trajectories under
biomechanical constraints and neural limitations of the motor
system that are not fully understood.

2 Reaching the same point on the trigger plane but at
reduced speed, for example, might be a proper response to an
increase of uncertainty in the location of the target because
high velocities at the trigger plane mean that any trajectory
change will result in increased torques and increased move-
ment error in generating the motor commands needed to
change direction (Hamilton et al. 2004; Todorov 2002). We
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will investigate this possibility in a second (“Scale”) experi-
ment where we vary the width of the prior distribution, leaving
the location of the mode unchanged.

To anticipate, we found that subjects modified position and
velocity in the two experiments, respectively, in a manner
consistent with the preceding qualitative predictions. In the
Location experiment, where we varied the mode of the prior
distribution, we could not reject the hypothesis of optimal
movement planning by either of the two criteria considered.
However, we did demonstrate that performance was subopti-
mal in the Scale experiment; subjects failed both the Compos-
ite Benefit test and the Row Dominance test. We discuss these
results in relation to previous work demonstrating predictive
control as well as recent work on Bayesian optimality in motor
planning.

M E T H O D S

Apparatus

Subjects sat at a custom-made (Mica-Tron) aluminum table that
securely held a computer monitor behind a 43 � 61-cm sheet of
transparent polycarbonate. Stimuli were presented on a Sony Multi-
Scan G500 with a functional display area of approximately 39.2 �
28.75 cm and pixels separated by 0.2 mm.

A Northern Digital Optotrak 3D motion capture system (with two
three-camera heads) was used to measure the position of the subject’s
right index finger, target screen, and tabletop with a set of eight
infrared light-emitting-diode (IRED) markers (sampling rate: 200 Hz
with IREDs strobed at 2,500 Hz). Four of the markers were embedded
in the transparent polycarbonate screen that covered the computer
monitor and allowed localization of the screen and integration of
Optotrak and computer monitor frames of reference. The monitor
reference frame was identified with the frontal x–z plane of the
subject. A fifth marker was placed at the near edge of the tabletop to
mark the start position of the reaches. The remaining three markers
were attached to an extended ring that fitted over the distal joint of the
subject’s right index finger. Optotrak measurements for these three
markers were used to compute the location of a “virtual marker” at the
tip of the finger (see Protocol). We calibrated the Optotrak cameras
spatially before each experimental run, providing root-mean-square
accuracy of 0.1 mm within the volume immediately surrounding the
subject and monitor apparatus (�2 m3). Four IRED markers were
embedded at precisely measured locations in the polycarbonate sheet
to aid in registering the monitor within the Optotrak system before
each experimental session. An additional IRED located at the front
edge of the table marked the starting point for subjects’ movements.
The experiment was run using Psychophysics Toolbox software
(Brainard 1997; Pelli 1997) and the Northern Digital software library
(for controlling the Optotrak) on a Pentium III Dell Precision work-
station.

Targets

Possible target locations were represented as vertical bars on the
screen. Bars were 32 pixels wide and 200 pixels high, about 24 min �
5 deg at the subject’s viewing distance of 42.5 cm. Each bar was
partitioned into 100 (4 � 25) segments, colored either light or dark
gray, and presented against a black background. The relative number
of light segments indicated the probability of that bar’s containing the
target (Fig. 2).

Prior probability distributions

In the Location experiment, we used five prior probability distri-
butions defined on nine equispaced targets (Fig. 2A). One of the five

central bars (the third bar In Fig. 2A) had prior probability 0.68 of
being the target, whereas the remaining bars each had probability
0.04. In effect, we varied the location of the mode of the probability
distribution while keeping its width constant.

In the Scale experiment, we used three prior probability distribu-
tions defined on seven equispaced targets (Fig. 2B). Each probability
distribution was spatially symmetric, with its maximum extended over
one to five of seven possible target locations, and the remaining
probability mass distributed evenly in the tails of the distribution.
These probability mass functions will be referred to as the 1) low-,
2) medium-, and 3) high-certainty conditions, for which the prior
probabilities of each of the target locations are as follows:

1 Low-certainty: � � [0.075 0.17 0.17 0.17 0.17 0.17 0.075]
2 Medium-certainty: � � [0.025 0.025 0.3 0.3 0.3 0.025 0.025]
3 High-certainty: � � [0.025 0.025 0.025 0.85 0.025 0.025 0.025]

We can quantify the uncertainty associated with each prior by its
Shannon entropy in bits, calculated as H(�) � ¥i �i log2 �i. These
values were 2.73, 2.10, and 1.00 for the high-, medium-, and low-
certainty conditions, respectively. In contrast, the entropy was 1.86 for
all priors in the Location experiment.

Protocol

A key comparison to be made in these studies is between reaches to
identical targets made under certain and uncertain information—that
is, between simple and composite reaches to the same target locations.
For this reason, each subject’s experimental session began with a
series of reaches made toward the same target locations and prior
distributions as described earlier, but with the correct target location
indicated before each reach. These determinate targets occurred at the
various locations within each distribution with the same frequency as
indicated by the probability distribution. Target locations during
simple reaches were indicated before reach initiation by a pair of
small gray dots flanking the correct potential target bar; at the trigger
plane, the nontarget bars disappeared, leaving just the target (now
colored entirely white). Subjects were aware of the visual coding of
prior probabilities by small white squares within the target bars, and
these reaches gave subjects a separate opportunity to learn the fre-
quencies with which each bar’s location would become the target for
each of the probability distributions, while they simultaneously made
simple reaches to known target locations. After initial reaches to
determinate targets, subjects were instructed that they would be
pointing to the same targets on the screen without the indicator dots
and paid a bonus based on the sum of the point values they earned in
each trial during this “test” phase of the experiment. The subject
earned 15 points for hitting the target, lost no points for missing the
target, and lost 45 points for reaching the screen after the time-out
period.

The Location and Scale experiments consisted of a single
session of 250 or 300 simple reaches, followed by 625 or 600
composite reaches, respectively. Before the experiment, there was
a calibration sequence in which the three markers held on the ring
were calibrated to the position of the fingertip. The calibration
procedure consisted of placing the tip of the right index finger over
the center of one of the IREDs embedded in the screen while
recording the locations of the three ring markers, to compare with
the known location of the screen marker. The location of the virtual
fingertip position could then be calculated on-line during the
experiment from the calibration information and the current posi-
tions of the three ring markers. Subjects were told they could rest
at any time between reaches to avoid fatigue. Subjects never
waited more than a few seconds between reaches.

Sequence of events within a trial

The following are characteristic of reaches to all targets, deter-
minate and probabilistic: At the beginning of each reach, the
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fingertip was positioned at a start location, 350 mm in front of the
screen and 1.5 mm to the right of the screen center. This position
was indicated to the subject as the intersection of the edge of the
custom tabletop and a raised ridge orthogonal to the tabletop edge.
When the fingertip crossed a virtual frontal plane 348 mm in front
of the screen while returning to the start position, the prior
distribution for the next trial was signaled by an auditory cue and,
after a 1-s pause, the visual representation of the prior was
presented on the screen. This probability distribution for possible
target locations was positioned near the center of the screen,
jittered to the left or right by a maximum of �1.6 cm (randomly
drawn from a uniform distribution). At any time after the presen-
tation of the prior on the screen, the subject could begin the reach.
The timer began as the fingertip recrossed the virtual frontal plane
348 mm in front of the screen.

When the fingertip crossed a second virtual plane (the trigger plane)
located one third of the distance to the screen (232 mm in front of the
screen), the target was triggered and the visual representation of the
prior probability density was replaced by a single white bar at the true
target location.

The reach terminated when the fingertip crossed a third virtual
frontal plane 3 mm in front of the screen and the fingertip velocity fell
to �1 mm/s. Three distinct auditory indicators were used to signal
whether the subject had hit or missed the target, or whether the
movement had been too slow. In addition, the words “HIT,” “MISS,”
or “TOO SLOW” were displayed after termination of the movement.
Feedback was displayed until the fingertip returned to the start
position, behind the first virtual plane 348 mm in front of the screen.
Returning to the start position began the next trial and the screen was
momentarily blanked.

Differences between reaches to determinate
and probabilistic targets

The main difference between reaches to determinate and probabi-
listic target locations was that the true target locations were displayed
before reach initiation for simple reaches to determinate targets, but
not for composite reaches to probabilistic targets. This was accom-
plished by displaying two small, low-contrast circles on either side of
the center of the bar that was to become the target (before the reach).
This provided subjects with perfect information about target location
while simultaneously allowing them to experience the frequency with
which each bar became the target for each prior probability distribu-
tion. It was this experience with the frequency at which each location
became the target that allowed subjects to learn each of the prior
probability distributions.

Additional information concerning the timing of the reach and
fingertip placement at the screen was also available during simple
reaches. The proportion of total time elapsed during each reach to
determinate targets was displayed as a timer bar, which provided an
on-line indication of the time elapsed during the reach. The movement
endpoint was displayed after each simple reach as a long thin vertical
line whose vertical extent was greater than that of the target bars. This
fingertip endpoint indicator was colored green for hits and red for
misses. No fingertip endpoint indicator was presented when subjects
timed out. Both the timer bar and the fingertip endpoint indicator were
displayed until the screen was blanked and a new trial begun. The
scatter of fingertip endpoints around the center of the target measured
during simple reaches was used to determine the width of bar that
would have produced 65% (Location experiment) or 85% (Scale
experiment) hits. Although the visual representation of the bars

FIG. 2. Stimuli. A: stimuli in the Loca-
tion experiment consisted of 9 bars. Propor-
tion of square white elements in each bar
was equal to the probability that bar would
eventually become the movement target.
High-probability bar could be at any of the
central 5 positions. An example of the high
probability located at the third bar is shown.
B: in the Scale experiment, 7 bars were used.
Either 1, 3, or 5 bars had probability higher
than that of the others. An example of the
medium-certainty condition (3 higher-prob-
ability bars) is shown.
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remained constant for all reaches, fingertip endpoints during reaches
to probabilistic targets were rewarded only when they fell within the
above-calculated distance from the center of the target bar. Naı̈ve
subjects did not detect this manipulation, which helped normalize
performance across subjects. During execution of composite reaches,
the bonus associated with the outcome of the current reach (15, 0,
45, for a hit, miss, or time-out, respectively) and a running total
bonus score were displayed after each reach.

The first few reaches to determinate targets were typically less
accurate because subjects were unfamiliar with the experimental
apparatus and with making timed reaches. Only trials collected after
performance had stabilized were used in later data analyses. We
estimated performance across time as the probability of hitting the
target in the immediately preceding 30 trials. We estimated asymp-
totic performance as the mean and SD of 30-point performance
measures for the second half of the determinate trials. We discarded
initial determinate trials until performance was within 2.5 SD of final
performance. This resulted in removal of 46 of 1,500 determinate
trials in the Location experiment and 89 of 1,800 in the Scale
experiment. No conclusions are changed by inclusion/exclusion of
these trials.

By measuring reaches to both determinate and probabilistic targets
using the same prior probability distributions, we will be able to
compare simple and composite reach trajectories to the same set of
target locations, under the corresponding difference in uncertainty
inherent in reaches to determinate and probabilistic targets locations.

Subjects

In the Location experiment, subjects were between 19 and 34 yr of
age, three male and three female; in the Scale experiment, subjects
were between 23 and 34 yr of age, four male and two female. All
subjects used the right hand for reaches in the experiment, although
one (SG, Location experiment) uses her left hand for some tasks,
including writing.

Data analysis

Several of the results presented here involve model comparison of
nonnested models and are best analyzed with Bayesian methods (see
Supplement2). Analyses are presented in detail in RESULTS to facilitate
understanding of the rationale and advantages of each technique to
the specific inference to be drawn from the data. Where appropriate,
we present the results of standard statistical and likelihood-based
methods for comparison.

Unlike a standard analysis, a Bayesian analysis requires not only a
likelihood function, but also a prior probability distribution. We use
Jeffreys priors in all Bayesian analyses. A Jeffreys prior corresponds
to the weakest possible assumptions that we can make about model
parameters and is commonly used in such analyses (Jaynes 2003;
Jeffreys 1946).

R E S U L T S

Location experiment

In what follows, the z-dimension (height) is of little impor-
tance because the targets were elongated vertically and only the
x-component of the fingertip position at the screen affected the
outcome of a trial. We first projected the reach trajectories onto
the tabletop and then calculated space-averaged trajectories
along the y-axis (i.e., the average x-position as a function of y)
for the central five target locations (determinate targets) and
corresponding five conditions (probabilistic targets). The x-po-
sition of the fingertip at the trigger plane for reaches made to

the central five determinate target locations was compared with
the x-position of the fingertip for reaches made to probabilistic
targets in the five conditions with the corresponding peak
probability locations.

Figure 3A shows space-averaged trajectories for each of the
central five determinate targets (mean of 50 reaches/subject),
as well as initial trajectories for the five probabilistic target
conditions (mean of 125 reaches/subject). Although all trajec-
tories are used in our analyses, the composite reaches shown in
Fig. 3A continue from the trigger plane with averages only over
reaches to the high-probability target location (mean of 85
reaches/subject) to reduce the complexity of the figure.

In addition to calculating the space-averaged trajectories
shown in Fig. 3A, we determined whether there were signifi-
cant carryover effects from one reach to the next on subjects’
trigger plane crossing points. In other words, we asked whether
a crossing point slightly to one side of average for a given
reach would be followed by a correction to the same or the
opposite side on one or more of the immediately subsequent

2 The online version of this article contains supplemental data.

FIG. 3. Mean spatial trajectories and trigger plane positions in the Location
experiment. A: mean lateral position as a function of distance from the screen
(open symbols: determinate targets; filled symbols: reaches to the most
probable of the probabilistic targets). Black vertical bar indicates the trigger
plane. B: trigger plane crossing points for uncertain vs. certain target locations.
Lateral distance from the center of the central target bar where the finger
crossed the trigger plane during reaches to probabilistic targets plotted as a
function of the same position during reaches to determinate targets; the 45°
dashed line indicates the identity function, i.e., the expected outcome if the
subjects adopted the same movement plan for uncertain targets as they had for
certain targets. Horizontal dashed line indicates the expected outcome if
subjects ignored the information contained in the probability distribution. In
both plots, means are over conditions and subjects.
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reaches. There were no significant autocorrelations of trigger
plane crossing points beyond lag 0, indicating that the position
at which subjects’ fingertips crossed the trigger plane on a
given trial was unaffected by the crossing points experienced in
previous trials. This is perhaps an unsurprising result because
the prior distributions were presented in an interleaved, unpre-
dictable order.

Reach trajectories exhibited the characteristic slight curva-
ture reported in other studies (e.g., Flanagan and Rao 1995;
Goodbody and Wolpert 1999; Osu et al. 1997), The slight
curvature seen in trajectories that did not require a large
mid-reach adjustment (Fig. 3A) corresponded to a roughly
constant rate of change of angular direction over the main body
of the reach (discussed in the following text; see also Fig. 4 for
similar results from the Scale experiment).

The increased uncertainty of reaches to probabilistic targets
relative to determinate targets influenced the initial composite
reach trajectories and was expected to produce a compression
of the former’s lateral trigger-plane crossing points relative to
the simple-trajectory crossing points measured during reaches
to determinate targets. However, because there was still sub-
stantial information concerning target location in each of the
prior probability distributions, we expected the crossing points

of composite reaches to be biased in the direction of the
location of the peak probability location, and therefore predict
a slope between 0 and 1 when trigger-plane crossing points
from simple trajectories are plotted against those from com-
posite reach trajectories. Consequently, we were interested in
determining whether a slope of a � 1 (no compression of
crossing points), 0 � a � 1 (partial compression), or a � 0
(full compression) captured the relationship between fingertip
position at the trigger plane for simple trajectories to the central
five targets and composite trajectories in the five test condi-
tions.

Figure 3B shows the relationship between these crossing
points for simple and composite reaches. The regression of
average composite-reach trigger-plane crossing in the five test
conditions on simple-reach trigger-plane crossing points for
reach trajectories to the central five target locations had a
least-squares fitted slope of a � 0.760. We can reject the
hypotheses that the slope is 0 (t � 77.1; P � 0.001) or,
separately, that it is 1 (t � 24.3; P � 0.001).

Although the preceding t-tests are the standard statistical
tests for determining whether a slope is not 0 or 1, they do not
provide a simultaneous test of the three hypotheses (no com-
pression, partial compression, full compression) that takes into
account the fact that there are many more possible slope values
that are consistent with partial compression than with the other
two alternatives. A better test of these hypotheses is possible
when the probabilities of models incorporating the constraints
that the slope is 0, 1, and between 0 and 1, respectively, are
compared directly to one another. These probabilities automat-
ically encode the discrepant numbers of possible slope values
that are consistent with the three competing hypotheses. The
probabilities of the three models were converted into odds
ratios and these ratios were converted into a decibel measure,
called evidence3(Jaynes 2003). The evidence in decibels for
full compression relative to the other two hypotheses is 82.1
dB. The evidence for zero compression is 17.3 dB and the
evidence for partial compression is 23.3 dB. There is clearly
more evidence for the hypothesis that the slope is strictly
between 0 and 1 than for slope values of precisely zero or one.4

If either full or zero compression had been the preferred
model, we would expect that the corresponding slope of 0 or 1
would be the best (highest-probability) estimate of the slope.
However, given that partial compression was the preferred
model (y � ax; 0 � a � 1), we next calculated the posterior
probability distribution associated with the range of possible
slopes consistent with partial compression and the data, using
an uninformative Jeffreys prior (Jeffreys 1946) for slopes. This
distribution has its maximum at a � 0.785, close to the
least-squares estimate of 0.760 reported earlier.

Haruno and colleagues (2001) described a model of motor
control, MOSAIC, that provides for multiple controllers. At
any instant, each controller suggests a motor command; these
commands are weighted based on a set of “responsibility
predictors.” One can imagine an application of this model to
the current experiment wherein one controller is associated
with each potential target and, when invoked alone, produces

3 Positive evidence provides support for the hypothesis being tested and
negative evidence provides support for the negation of that hypothesis, relative
to the other hypothesis or set of hypotheses being tested.

4 Although as arbitrary as any significance threshold using P-values, we use
a criterion for evidence of 3 dB, which corresponds to odds of nearly 2:1.

FIG. 4. Mean spatial and directional trajectories in the Scale experiment.
A: mean lateral position as a function of distance from the screen (open
symbols: determinate targets; filled symbols: probabilistic targets). B: mean
movement angle (projected onto the horizontal plane) as a function of distance
from the screen (open symbols: determinate targets; filled symbols: probabi-
listic targets). In both plots, means are over conditions and subjects. Black
vertical bars indicate the trigger plane.
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the simple trajectory to that target. In MOSAIC, these respon-
sibility coefficients are learned based on forward-model pre-
diction errors. However, consider a modification of MOSAIC
for our probabilistic-target conditions in which the responsi-
bility coefficients are equal to the corresponding target proba-
bilities. This modified model predicts a mean composite tra-
jectory equal to the target-probability–weighted average of the
simple trajectories; that would predict partial compression with
a slope of 0.64 and an intercept of 2 mm. The evidence favors
the hypothesis of partial compression over this “mixtures-of-
strategies” hypothesis by 3.7 dB. The mixtures-of-strategies
hypothesis is also rejected by t-tests comparing the slope (0.64)
and intercept (2 mm) predicted by a mixture of strategies to the
best-fit slope (0.76, P � 0.01) and intercept (0.84 mm, P �
0.01). Thus we must reject this “mixtures-of-strategies” model
for our Location experiment data.

ROW DOMINANCE TEST. We next tested whether subjects traded
off accuracy at hitting low-probability targets for improved
accuracy at hitting the same targets when they have high
probability. We can test relative effectiveness of the observed
initial reach trajectories by comparing the points earned by the
subject in, say, condition 1 (leftmost high-probability target,
with target prior probability distribution �1 using the observed
strategy s1) with the expected number of points the subject
would have earned had the subject instead used the strategy
displayed in another condition (e.g., strategy s2 from condition 2).

Each of the k � [1, 2, . . . , 5] conditions in the experi-
ment corresponded to a prior on the nine targets that we
denote by the row vector �k � [�1k, . . . , �9k]. Let pk �
[p1k, . . . , p9k] denote the frequency at which subjects hit each
of the nine targets when each was the target while using the
movement strategy adopted for condition k; that is, pik �
p(Hi � sk �Ti). For example, the initial trajectory observed in the
condition with the mode at the center target position resulted
in hit frequencies at each of the nine targets of p̂3 � [0.267,
0.300, 0.233, 0.667, 0.708, 0.567, 0.167, 0.233, 0.133] based
on the data. Clearly, this initial trajectory is much more
effective in acquiring the central (5th) target position than, say,
the 7th position.

The inner product �pk, �k� � ¥i pik�ik is the sum of the prior
for each target multiplied by the frequency at which that target
was hit. That is, it is the expected hit rate when adopting
strategy sk in condition k. This expected hit rate is also
proportional to the subject’s expected earnings in condition k
using strategy sk.

But what if the subject had used the movement strategy used
in a different condition k� in condition k? The subject’s rate of
success would then be �pk�, �k�. If �pk�, �k� � �pk, �k�, then
this alternative strategy for condition k would have earned less
on average than the actual strategy used. That outcome is
consistent with the claim that the subject has chosen the
optimal movement strategy that this subject is capable of in
condition k. However, if �pk�, �k� � �pk, �k�, we can reject this
claim of optimality: the subject is capable of a movement
strategy, exhibited in condition k�, that would have earned
more in condition k than the strategy actually used.

We can compute the inner products of all pairings of hit-
probability vectors pk�, k� � 1, . . . , 5 and priors �k, k �
1, . . . , 5 as a 5 � 5 matrix and examine the match between
movement strategy and prior. These are shown in Table 1. The
kth row records the performance of each of the movement
strategies k� in condition k (with prior �k). The third row, for
example, records how each of the movement strategies would
have fared with prior �3. The maximum value is 0.584 (paired
with p3 for strategy 3) and the minimum value is 0.401 (paired
with p5 for strategy 5). Among the strategies evoked across
conditions, the strategy chosen in condition 3 maximizes ex-
pected earnings in condition 3. A necessary condition for
optimal performance (maximizing expected gain) is that the
diagonal value in each row not be significantly less than any of
the other entries in the row. This condition must hold for each
row and we therefore call it the Row Dominance criterion and
the corresponding test the Row Dominance test.

In the results summarized in Table 1, the diagonal entry in
each row is greater than the other entries in the same row, not
less, and therefore not significantly less (all P values for
comparisons of row entries are �0.5). We do not reject the
hypothesis of Row Dominance.

One objection to this test concerns its power. Suppose that,
across the range of experimental conditions, subjects’ winnings
are scarcely affected by picking the wrong movement plan and
the outcome of the Row Dominance test simply captures this
insensitivity. We can test a stronger claim than Row Domi-
nance, that each diagonal entry is not only greater than or equal
to the other entries in its row, but that the inequality is strict.
That is, not only did the subjects pick a movement strategy that
did not perform worse than another observed strategy, but had
they used any of these movement strategies used for the other
priors, they would have done significantly less well on average.

TABLE 1. Location Experiment: Row Dominance (pooled over subjects)

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

Condition 1 0.51 (0) 0.47 (14.0) 0.28 (203.8) 0.35 (104.2) 0.38 (74.2)
Condition 2 0.47 (45.9) 0.58 (0) 0.56 (5.8) 0.48 (46.1) 0.29 (287.3)
Condition 3 0.41 (114.4) 0.56 (7.5) 0.58 (0) 0.46 (67.5) 0.40 (125.6)
Condition 4 0.28 (279.5) 0.49 (28.3) 0.49 (28.2) 0.56 (0) 0.47 (40.1)
Condition 5 0.15 (442.7) 0.37 (61.6) 0.24 (235.2) 0.48 (2.4) 0.49 (0)

Results of the Row Dominance test for the Location experiment. We test whether subjects could have earned more on average in each experimental condition
by using a strategy used in a different condition. The Bayesian optimal movement planner is one who selects the movement strategy for each condition that
maximizes expected gain. If we find that our subjects could have done better in a condition by adopting the strategy they used in another condition, then we can
reject the hypothesis of optimality. The entry in each cell of the table is the probability of obtaining a hit when one of the five observed reach strategies (indexed
by column) is combined with one of the five prior distributions (indexed by row); values in parentheses report an evidence measure (dB) testing whether the
corresponding probability is smaller than the probability on the main diagonal in the same row. Positive values are evidence that it is; negative values, that it
is not (italicized entries are above the 3 dB threshold). Boldface entries mark the maximum of each row. Probabilities were calculated from the lumped data,
with each subject contributing an equal number of trials.
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We therefore tested this Strict Row Dominance hypothesis
by calculating the probability that the values along the main
diagonal were strictly greater than other values in the same
row. The evidence values associated with this hypothesis (in
dB) calculated from these probabilities are given in parentheses
to the right of the expected hit rates (Table 1, calculated from
hit frequencies pooled over all subjects; also see Supplement
for confidence intervals surrounding estimates of expected hit
rates). Positive evidence values5favor the hypothesis that diag-
onal elements are strictly greater than the relevant off-diagonal
element within that row, consistent with our prediction.

All maximum expected hit rates for each row occur along
the main diagonal, consistent with our prediction. Italicized
expected hit rates are below the diagonal elements by �3 dB.
In this experiment, all off-diagonal rates are significantly
below those on the diagonal except for the last comparison in
the fifth row, which is just below the 3 dB criterion.

COMPOSITE BENEFIT TEST. In addition to testing Row Domi-
nance, we can assess whether reach planning was consistent
with a second necessary condition for optimality, the Compos-
ite Benefit criterion (Eq. 4). Equation 4 implies that an optimal
reach planner will choose a simple movement plan to a single
target, ignoring other possible targets and the information
provided when crossing the trigger plane, when the expected
hit rate using a simple movement plan for that target is greater
than the overall expected hit rate for the composite movement
plan. If a simple movement plan had been used to generate
reaches in the Location experiment, a maximum expected hit
rate of 0.44 would have been observed (by design) in all
conditions (i.e., 0.68 probability of the high-probability target
multiplied by 65% target hits based on the performance-
adjusted rewarded target width). Consistent with the Compos-
ite Benefit criterion, this is less than the expected hit rates
observed experimentally in all conditions (Table 1, main diag-
onal; the evidence values for each row are 27.0, 74.7, 80.0,
61.6, and 13.7 dB). Subjects did not simply plan to reach to the
most probable target but instead crafted a composite plan that
allowed for the possibility that other, less-probable targets
might be designated the reach target.

Scale experiment

In the Location experiment we found that subjects varied the
spatial location of the point where the initial part of the reach
crossed the trigger plane in response to changes in prior
distributions, moving the fingertip closer to the peak of the
prior probability distribution. Subjects deliberately traded off
accuracy at hitting low-probability targets for improved accu-
racy at hitting high-probability targets. We could not reject the
hypothesis that they chose optimal movement strategies for
each prior (Row Dominance and Composite Benefit tests).

In the Scale experiment, we used three priors that shared the
same central peak position but that differed in the width of
the peak probability region (Fig. 2B). This set of priors varied
the certainty with which the subject knew the location of the target
before movement onset, while keeping the mean and median of
the prior constant at the center of the distribution. Because

increasing the width of the prior increased the uncertainty of target
location and therefore the probability of needing a trajectory
adjustment to hit the target, we predicted that subjects would tend
to decrease their speed at the trigger plane with increasing uncer-
tainty of the prior, while maintaining a fingertip spatial trajectory
similar to that observed when aiming toward the central target
location during determinate-target reaches.

FINGERTIP SPATIAL TRAJECTORIES. In Fig. 4 we plot mean spatial
trajectories by target for composite and simple reaches (across all
subjects and conditions). Composite-reach spatial trajectories
(closed circles) begin along the same trajectory found for simple
reaches to the central target, both in their spatial coordinates (Fig.
4A) and in their direction (Fig. 4B). There is a leftward curvature
during the main portion of the spatial trajectories, for both simple
and composite reaches. This curvature is the result of a slow,
approximately constant-magnitude change of movement direction
throughout most of the reach, seen in Fig. 4B as the straight-line
trajectory describing movement direction over the relevant por-
tions of the reaches.

As described earlier, the instantaneous direction of fingertip
motion toward each of the seven target positions during
reaches to determinate targets is almost immediately distinct
for distinct targets (Fig. 4). This differentiation is delayed in
reaches to probabilistic targets for about 147–177 mm (corre-
sponding to 150–196 ms after presentation of the target),
depending on the criterion chosen.

Figure 5 plots the variance of the direction of fingertip
motion (“directional variance”) at each position along the way
to the screen. The filled black circles plot the directional
variance pooled over all targets (over all data points at each
y-position contributing to the average trajectories plotted as
filled symbols in Fig. 4B). The open circles plot the variance
calculated relative to the mean direction within each target
condition (variance calculated over all differences between
data points contributing to the filled symbols in Fig. 4B and the
corresponding average trajectory direction for that target con-

5 Because diagonal elements can produce evidence that they are neither
greater than nor less than themselves, diagonal evidence values must be 0 dB
in all cases.

FIG. 5. Onset of trajectory compensations in the Scale experiment. Finger-
tip motion angular variance of the test reaches (left ordinate) is plotted as a
function of distance from the screen, calculated either relative to the mean of
each condition and target (open circles) or relative to the overall mean across
conditions and targets (filled circles). Evidence for a difference between these
curves is overlaid and scaled to the right ordinate (filled diamonds). Two
criteria for a significant difference are shown: evidence above zero (dotted
line) and the start of the rise of evidence to its peak value (dashed line). Black
vertical bar indicates the trigger plane.
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dition). The filled diamonds and right-hand ordinate indicate
the evidence that these two variance values differ. At 196 ms
after presentation of the target (mean distance of 177 mm,
dotted line), the evidence function becomes positive. This is a
reasonably conservative criterion for the onset of target differ-
entiation in the movement given that we are looking for a
pattern of results in which the evidence becomes greatest just
before the target plane and decreases to a stable level before
and after. A less-conservative estimate (150 ms, or 147 mm)
results from a criterion based on the point at which the
evidence function begins to rise to its peak value (Fig. 5,
dashed line). Although the sign of the evidence calculated at
that point is negative, the overall pattern argues that this is still
a reasonable choice for the point of divergence toward indi-
vidual targets. It is also worth mentioning that fingertip motion
direction is a more sensitive measure of the initial divergence
toward the final reach target than is the same analysis per-
formed on horizontal spatial-position data. For example, using
the criterion that the evidence function crosses zero as the start
of divergence, the estimated latency based on position variance
is 231 ms, 35 ms later than the estimate based on the same
criterion derived from directional variance.

VELOCITY PROFILES. Forward velocity profiles peak shortly
after the trigger plane is crossed, just before the halfway point
of the reach, consistent with previous studies (e.g., Konczak
and Dichgans 1997; Morasso 1981). These profiles displayed
the roughly parabolic shape generally observed during similar
reaching movements (e.g., Milner and Ijaz 1990; Nakano et al.
1999; Todorov and Jordan 1998), with the expected deviations
from this pattern occurring near the end of reaches requiring
substantial terminal corrections. That is, composite-reach for-
ward velocity was slightly reduced during the lateral excur-
sions required for large trajectory adjustments near the ends of
some reaches. Nevertheless, reaches were always smooth and
velocity profiles observed during composite reaches had shapes
virtually identical to velocity profiles observed during deter-
minate-target reaches.

In addition to calculating average velocity profiles, we
determined whether there were significant carryover effects
from one reach to the next on subjects’ trigger plane crossing
speeds. In other words, we asked whether a crossing point
speed slightly above or below average on a given reach would
be followed by a correction on one or more of the immediately
subsequent reaches. There were no significant autocorrelations
of trigger-plane crossing speeds beyond lag 0, indicating that
the speed at which subjects’ fingertips crossed the trigger plane
on a given trial was unaffected by the crossing speeds experi-
enced in previous trials.

Velocity at the trigger plane varied as a function of the
information available in each of the prior probability distribu-
tions for target location. Subjects modulated their speed at the
trigger plane such that they moved fastest when the probability
distribution was most informative and slowed as the informa-
tion content decreased (Fig. 6).

As with the results of the Location experiment, it is possible to
generate and test the predictions of a “mixtures-of-strategies”
model to the present results. Here, the prediction for a mixture of
strategies is even more forcefully rejected than earlier because
determinate-reach velocities at the trigger plane were all indistin-
guishable (all P-values were �0.1). If subjects had probabilisti-

cally mixed the determinate-reach trajectories to produce their
reach profiles in the three conditions examined here, there would
have been no variation in trigger-plane crossing speed. This is in
sharp contrast to the result shown in Fig. 6.

ACCELERATION PROFILES. Acceleration profiles were approxi-
mately linear during the main portion of the reaches, as would
be expected from bell-shaped velocity profiles, excluding an
initial sharp increase and a spike near the end of the profile as
trajectories were adjusted near the target location. There were
no strong differences between determinate and probabilistic
reaches in the acceleration profiles or between acceleration
profiles observed under the three prior probability distributions.

ROW DOMINANCE TEST. We next tested whether the adjust-
ments made to the three levels of target certainty passed the
Row Dominance test. As can be seen in Table 2 (see Supple-
ment for confidence intervals surrounding estimates of ex-
pected hit rates), there is a failure of Row Dominance in the
high-certainty condition. Our evidence analysis confirms this,
indicating that performance using the observed strategy in the
high-certainty condition produced significantly poorer perfor-
mance than what would have been obtained from using the
strategy used in the medium-certainty condition (strategy 2).

COMPOSITE BENEFIT TEST. In addition to being significantly
suboptimal by the Row Dominance test, reach planning was
also suboptimal by the Composite Benefit test (evidence values
for each row of 116.3, 460.5, and 728.1 dB). A simple
movement plan would have produced maximum hit rates of
0.72, 0.26, and 0.14 under the high-, medium-, and low-
certainty conditions, respectively (these represent the product
of the probability of one of the high-probability targets times
the 85% hit rate based on the performance-adjusted rewarded
target width). Subjects would therefore have obtained greater
earnings had they used a simple movement plan in the high-
certainty condition. In fact, the simple movement plan would
have outperformed not only the observed composite trajecto-
ries in that condition, but also the best of the observed move-
ment plans (s2, observed in the medium-certainty condition) in
the high-certainty condition (see Table 2). By both the Row
Dominance and Composite Benefit criteria, subjects’ perfor-
mance in the Scale experiment was suboptimal.

FIG. 6. Speed and information content. Speed at the trigger plane is plotted
as a function of the entropy of the prior distribution for the Scale experiment.
Error bars are SEs across subjects and targets for each prior probability
distribution.
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D I S C U S S I O N

In the speeded reaching task considered here, the subject
does not know the actual target of the movement until the
fingertip has arrived at an invisible “trigger plane” approxi-
mately one third of the way between the starting point and the
target. The subject does know the possible continuations to
each possible target and the prior probability that each target
will be the actual target. The challenge is to plan a mid-reach
state specifying the location, velocity, and so forth of the
fingertip at the trigger plane that is a compromise between the
possible targets and that maximizes expected gain. The subject
could plan a trajectory to the trigger plane that arrives at a
particular location with a particular velocity and may plan
higher derivatives of the trajectory as well.

We have presented experimental evidence that movement
plans change in response to manipulation of prior probability
distributions, and these changing movement plans serve to alter
the location and speed of the mid-reach state of the arm. When
we moved the location of the high-probability target in the
Location experiment, subjects responded by planning trajecto-
ries to the trigger plane that differed primarily in location. In
the Scale experiment, we increased the width of the high-
probability center of the prior distribution (and thereby the
uncertainty about true target location). In response, subjects
reduced the speed of trajectories at the trigger plane.

We formulated and tested two criteria for optimal perfor-
mance maximizing expected gain. We could not reject the
hypothesis of optimal movement planning in the first (Loca-
tion) experiment by either criterion. However, we could reject
the hypothesis of optimal movement planning in the second
(Scale) experiment. Subjects altered their trajectories in re-
sponse to changes in target uncertainty, but not optimally.

Probabilistic anticipatory control and optimality

In the Location experiment, participants planned a move-
ment that was a compromise between moving directly to the
highest-probability target and moving to the central target.
When new target information was provided after the reach
passed the trigger plane, this led to an abrupt change in
direction requiring an increase in torque. Lower torques gen-
erate lower levels of multiplicative motor noise (Hamilton and
Wolpert 2002; Jones et al. 2002), ultimately leading to higher
hit rates and greater expected gain. Thus one can interpret the
results of our experiments in terms of the biomechanical
constraints on good performance.

In either of the two experiments, we can imagine the con-
tinuation trajectories from any mid-state at the trigger plane to

any possible target and compare them according to the torque
incurred in changing direction. If the subject plans to move to
the trigger plane at the far left edge then continuation trajec-
tories that return to targets at the right-hand side will involve a
large change in direction of travel. A change in location at the
trigger plane in turn changes the torque-induced movement
error and ultimately the probability of hitting a possible target
on trials when it proves to be the actual target. Moreover, the
faster the fingertip is moving at the target plane, the greater
torque incurred in changing direction. The ideal movement
planner must choose a movement plan to trade off torque-
induced movement error for continuations to high- and low-
probability targets.

An implication of our results is that subjects are able to
implement a predictive control strategy that takes into account
the probability of later trajectory changes, integrating early
probabilistic target information with knowledge of biome-
chanical and neural constraints. These findings are consistent
with other recent work demonstrating compensatory torques
for Coriolis and other anticipated perturbing forces (Flanagan
and Wing 1997; Hudson et al. 2005; Kim et al. 2006; Lackner
and DiZio 1994; Patla et al. 2002; Pigeon et al. 2003a; Scheidt
et al. 2005; Tunik et al. 2003; Wang and Sainburg 2005). The
current results show, in addition, that these adaptive precom-
pensations can influence the velocity profile of the reach and
not just the spatial trajectory or endpoint of the reach.

Previous work suggesting predictive compensatory torque
generation assumed a deterministic computation of the magni-
tude of compensation based on the physics of the to-be-
compensated forces. Although it is clear that a predictable
contingency must be present for the planning of compensatory
torques, this does not necessarily imply an internal model
based simply on a deterministic physical relationship. Our
results show that predictive control is also influenced by both
the probabilities that compensatory torques will be required
and the expected magnitudes of those torques.

Suboptimality of speed modulation

Given that subjects did not modulate speed in a manner
consistent with that of an optimal movement planner, it is
interesting to speculate about the possible causes of this sub-
optimality. Because the pattern of speed modulation was ex-
actly as predicted, our main clues regarding the suboptimality
are provided by the Composite Benefit and Row Dominance
tests. The Composite Benefit test tells us that, in the high-
certainty condition, subjects would have improved their per-
formance by ignoring all but the central target, and simply
concentrating on hitting that target whenever it appeared. That
is, subjects appear to place too high a value on hitting the
occasional eccentric target. In addition, Table 2 tells us that
performance would have increased in this condition by reduc-
ing speed at the trigger plane—speed modulation with target
uncertainty was greater than what would have been required
for subjects to maximize gain.

It is possible that the suboptimality observed here is due to a
lack of fidelity in subjects’ representations of the prior probability
distribution of target locations. This representation was learned by
experiencing each probability distribution of target locations dur-
ing the determinate-target reaches made at the beginning of each
subject’s session. Although this implicit learning may have led to

TABLE 2. Scale Experiment: Row Dominance (pooled over
subjects)

Strategy 1 Strategy 2 Strategy 3

Condition 1 0.58 (0) 0.62 (�13.4) 0.57 (3.3)
Condition 2 0.49 (19.8) 0.55 (0) 0.54 (2.5)
Condition 3 0.37 (61.4) 0.48 (�0.7) 0.48 (0)

Results of the Row Dominance test in the Scale experiment. Each element
of the table is the probability of obtaining a hit when combining one of the
three observed reach strategies (indexed by column) with one of the three prior
distributions (indexed by row). The calculation of probabilities, evidence, and
confidence intervals, as well as the organization, follow that of Table 1.
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an imperfect representation of the relevant prior probability dis-
tributions, it is unclear why this would occur only in the Scale but
not in the Location experiment.

Timing of deviations toward noncentral targets

We detected subjects’ responses to target presentation at
latencies of 150–195 ms (direction) or 171–231 ms (position),
depending on the criterion chosen (Fig. 5). These latencies are
consistent with estimates of simple reaction times (150–200
ms) and those measured by Soechting and Lacquaniti (1983) in
a two-step paradigm (who found latencies of 150–200 ms
measured by the initial EMG response and 180–230 ms for a
change in kinematic variables). This is perhaps surprising,
given the greater complexity of our task, in which subjects
were required to detect the target and then compute and put
into effect the torques needed for the requisite change in
trajectory. However, most studies have used a detection crite-
rion based on position, which we found to be less sensitive than
our movement-direction–based criterion (Fig. 5).

Characteristic reach paths

In our study, as in previous research, we found slightly
curved reach trajectories (Figs. 3 and 4). This finding relates to
the issue of directional versus positional control of reaching,
and the oft-cited description of reach trajectories as following
a “straight-line path.” This is an inaccurate description of
normal reach trajectories, as previously noted (Goodbody and
Wolpert 1999). It is an open question whether the curvature of
normal reaches projected onto a horizontal plane is due to some
aspect of the perception of the movement (Brenner et al. 2002;
Flanagan and Rao 1995; Goodbody and Wolpert 1999; Osu
et al. 1997) or to intrinsic biomechanical (Goodbody and
Wolpert 1999) or computational (Osu et al. 1997) factors. In
this respect, it is of interest to note that although the trajectory
is curved, in our data movement direction is a linear function
of the distance traveled. In the context of spatial trajectories, it
has been argued that planning takes place in the coordinate
system in which the description of the movement is a straight
line (e.g., Nakano et al. 1999; Pigeon et al. 2003b). This line of
argument would lead to the conclusion that it may be direction
and not position that is planned in our reaching task.

Planning single- and multiple-target movements

When planning movements to a series of targets, it is
possible that each segment of the movement is planned inde-
pendently of the other segments. This would be an optimal
strategy for a reach to N targets in succession if it were
impossible to adjust the state of the fingertip for any of the i
(i � N) intermediate targets to increase the probability of
acquiring the (i � 1) target. In a study of speeded reaching to
two consecutive targets visible before reach initiation, Aivar et
al. (2005) found that the reach segments to the two targets were
not planned independently.

In relation to the current study, we note that the trigger plane
is similar to an initial target, but one that it is impossible to
avoid on the way to the second target (the screen), and for
which the state of the fingertip as it is reached can be planned
with many fewer constraints than would be possible using an
initial target that was spatially constrained. If the constraints on

the state of the fingertip as it passed through the trigger plane
were made more restrictive, the movement plan governing
each segment of the reach could be formed more independently
of the plans for other segments. That is, the movement plan for
the entire sequence would tend to resemble a series of simple-
movement plans instead of a composite movement plan. There
is no advantage to forming a composite movement plan if there
is no way to bias one state of the fingertip to facilitate achieving
another state.

Conclusions

We investigated how human subjects plan speeded reaching
movements when the exact target of the reach is not known
during the initial part of the movement. At the start of each
trial, subjects see an array of potential targets (vertical bars) for
the reaching movement. Any of the targets could be the actual
target for that trial and, initially, the subject is given only the
prior probability that each potential target could be the actual
target. After the subject has moved one third of the distance to
the screen (and his/her fingertip has passed through an invisible
“trigger plane”) the actual target is marked. If the subject
touches the actual target on a trial within the time limit, he or
she earns a monetary reward.

The challenge for the subject is to plan the initial part of the
movement to the trigger plane without knowing the location of
the actual target. This initial movement has many possible
continuations, to each of the possible targets. The subject
knows the prior probability that each possible continuation will
lead to the actual target and must select a composite movement
that strikes a balance between possible continuations. As the
prior distribution changes, the subject may alter the location,
velocity, and possibly higher derivatives of fingertip location at
the trigger plane.

We manipulated the prior distribution of potential targets in
two experiments and measured how location and speed of the
fingertip changed at the trigger plane. In the Location experi-
ment, one potential target was more probable than the remain-
ing potential targets, all of which were equally likely. We
manipulated the location of the most probable target and
examined how subjects varied the mean location and velocity
at which they passed through the trigger plane. We expected
that subjects would primarily alter location but not velocity and
that is what we found. In the Scale experiment, the prior consisted
of a central higher-probability region and symmetric, surrounding
lower-probability regions. We varied the width of the central part
of the prior distribution, thereby increasing or decreasing the
uncertainty (entropy). We found that increasing uncertainty led
subjects to arrive at the trigger plane at lower velocities.

For our purposes, an “ideal” or “optimal” movement planner
is an algorithm that plans movements to maximize expected
gain. In our task, an ideal movement planner would plan a
composite movement that places the fingertip in the trigger
plane at a location and traveling at a speed that represents the
trade-off between possible continuations of the movement and
their probabilities that maximizes expected gain.

We developed two necessary conditions that an ideal move-
ment planner must satisfy and tested whether subjects satisfied
them. The first was the Row Dominance criterion. We computed
how well subjects would have done in each condition if they had
adopted the strategy that they used in each of the other conditions.
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The optimal movement planner, by definition, picks the optimal
strategy in each condition. Consequently, if we find that subjects
in any condition could have earned more on average by adopting
the strategy they used in another condition, we can reject the
hypothesis that they are optimal. Although this was not the case in
the Location experiment (we found no evidence that subjects
could have improved their performance by choosing another of
the observed strategies), a clear pattern of deviation from opti-
mality was observed in the Scale experiment.

Suboptimal performance was also detected in the Scale
experiment by the Composite Benefit test. The results of this
test mirrored the results of the Row Dominance test: in the
Scale experiment, this test failed as well, but we found no
evidence for failure in the Location experiment.

We have therefore demonstrated that subjects plan position and
velocity at an arbitrary mid-reach location based on probabilistic
information provided before reach initiation. We could not reject
the hypothesis of optimality by both the Composite Benefit and
the Row Dominance tests in the Location experiment. However,
both tests reject the hypothesis that subjects optimally planned
velocity at the trigger plane in the Scale experiment.
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