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Physics-Based Approaches to Modeling
Surface Color Perception

Laurence T. Maloney

The diversity of color results from the diversity
of surfaces which absorb the light
– Ulrich von Strassburg (1262)

Introduction

Surface Color Perception. The study of surface
color perception is a proper subset of the study of
color perception, and one way to highlight the differ-
ence between them is to consider the effective stimu-
lus appropriate to each. The effective stimulus for the
study of color perception, broadly construed, is the
spectral power distribution of light arriving at each
point of the left and right retinas. There is no assump-
tion that the patterns of light correspond to any possi-
ble arrangement of surfaces, objects and illuminants
in a three-dimensional scene.

In contrast, the study of surface color perception
presupposes that the light reaching the retinas has a
history. The effective stimulus is the result of the
interaction of certain light sources (the illuminant)
with the surfaces of objects in an environment. It is
clear that any stimulus appropriate for the study of
surface color perception is also appropriate for the
study of color perception but not vice versa.

Once we assume that the stimulus results from the
interactions of lights and surfaces in an environment,
it is natural to ask what information about the illumi-
nants and surfaces in the environment is visually
available to the observer. In particular, we can ask, to

what extent does the color appearance assigned to a
surface provide information concerning the physical,
spectral properties of the surface? Visual systems
whose estimates of surface color are determined by
the spectral properties of surfaces exhibit a constancy,
color constancy. Visual systems with color constancy
have an objective capability: they remotely sense sur-
face spectral information and represent it through
color. This objective capability can be assessed in
other species (Ingle, 1985; Werner, 1990; Neumeyer,
1981; Jacobs, 1990; See also Jacobs, 1981; 1993) as
well as in humans.

Accordingly, while surface color perception is
only a part of the study of color perception, it has long
been recognized as an important part: “Colours have
their greatest significance for us in so far as they are
properties of bodies and can be used as marks of iden-
tification of bodies.” (von Helmholtz, 1896/1962, Vol.
II, p. 286).

Surface color perception is intimately linked with
the precise physical, spectral properties of illuminants
and surfaces in a scene. Indeed, without restrictions
on illuminants, no degree of color constancy is possi-
ble: “The ... problem ... of constant color appearance
is met by just one condition, namely restriction to one
light source of constant spectral character “ (Ives,
1912b, p. 70). In studying surface color perception,
we cannot ignore the physical constraints that make it
possible.

Last of all, scene layout in three dimensions can
profoundly affect lightness perception (Gilchrist,
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1977; 1980; Gilchrist, Delman & Jacobsen, 1983; See
also Gilchrist, 1994). Consideration of surface color-
perception leads us to consider possible connections
between depth and shape perception and color percep-
tion.

Scope of the Review. This chapter is primarily
concerned with recent algorithms for surface color
perception based on explicit physical models of the
environment. The first, and largest, part of the chapter
describes these models and algorithms. Many of these
algorithms are drawn from the computer vision litera-
ture. Even when there is no explicit claim by the
authors that an algorithm could serve as a model of any
aspect of human vision (or, more generally, biological
vision), I have included it if it has implications for
human vision.

The description of the algorithms is followed by a
discussion of the relation between them and traditional
models of color vision based on hypothesized color
channels and the transformation of color information
through successive stages (See: Hurvich, 1981;
Wyszecki & Stiles, 1982a; Kaiser & Boynton, 1996). I
briefly discuss models of human surface perception
that are not based on explicit physical models such as
Land and McCann’s retinex theory (Land & McCann,
1971; Land, 1983; 1986) in von Kries Algorithms.

The algorithms presented differ primarily in how
they obtain information about the illuminant in a given
scene. The last part of the review proposes that the
problem of illuminant estimation can be formally
treated as a cue combination or fusion problem, analo-
gous to cue combination in depth or shape vision
(Landy et al., 1995).

Difficulties. The study of surface color perception
is beset by three difficulties, each of which I will return
to below. The first is methodological, and will be dis-
cussed in Methodological Issues.

The second is our current lack of knowledge con-
cerning the physics of light and surface interactions in
three-dimensional scenes. Research in the last 30 years
has led to a better representation of light-surface inter-
action. As a consequence, a number of new approaches

to recovering surface properties have arisen. The bulk
of this review concerns these algorithms and the mod-
els of light-surface interaction that underly them. A
central theme in this review is the link between recov-
ery of surface color information and information con-
cerning object shape and scene layout. It will become
clear, however, that our understanding of the interac-
tions of light and surface in real environments is far
from complete.

The last difficulty, for lack of a better term, might be
referred to as “conceptual clutter”. The study of color
constancy is beset by certain imprecisions in terminol-
ogy. Over the course of the review, beginning with Ter-
minology, I will attempt to clarify some of them.

Related Work. Previous reviews of the material
discussed here include Hurlbert (1986; 1998), and
Maloney (1992). Wandell (1995) is a useful introduc-
tion to both the empirical issues surrounding surface
color perception and the necessary mathematical tools.
Kaiser and Boynton (1996, 570ff) contains a partial
review of some of the material described here. Healey,
Shafer and Wolfe (1992) provides an overview of work
in physics-based vision, and books by Hilbert (1987)
and Thompson (1995) describe work in philosophy
closely related to the material reviewed here. The two
volumes edited by Byrne and Hilbert (1997a;b) pro-
vide an interesting introduction to both color science
and philosophy.

 Terminology

Color Constancy. The term ‘color constancy’ is
employed in different ways in the literature. For some
authors (Jameson & Hurvich, 1989; Kaiser & Boyn-
ton, 1996; Hurlbert, 1998), the term describes human
perceptual performance: “the tendency to see colors as
unchanging even under changing illumination condi-
tions” (Hurlbert, 1998). The emphasis here is on what-
ever it is observers do achieve in any particular
circumstance.

A second use of the term ‘color constancy’ is to
treat it as a synonym for discounting changes in illumi-
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nation of a scene (A sampling of authors: Beck, 1972;
Arend, 1993; Foster & Nascimento, 1994; Bäuml,
1995). Brown and MacLeod (1997) have correctly
criticized this use of the term ‘color constancy’ as
neglecting other factors that might affect surface color
perception: the presence of other surfaces, atmo-
spheric haze, etc. We might reasonably refer to stabil-
ity of color appearance despite changed in the
illuminant as ‘illuminant color constancy’, defining as
many new constancies as there are factors that can
potentially influence perceived color: ‘haze color con-
stancy’, etc.

Nevertheless, it is awkward to define something by
listing the many things it does not depend on. Conse-
quently, I adopt the following definition: an observer
has (perfect) color constancy precisely when the color
appearance assigned to a small surface patch by the
visual system is completely determined by that sur-
face’s local spectral properties.1 It should be clear
that, if the color appearance of a surface patch is deter-
mined by its surface spectral reflectance, then it is not
affected by changes in the illuminant, surrounding
patches, haze, etc.

To summarize: the term ‘color constancy’ will be
used in this review to describe a goal, one that is not
necessarily achieved by any observer. Of central inter-
est is the degree to which, and the circumstances under
which, a human observer approximates ‘perfect color
constancy’ in his or her judgments of surface color.

Various authors (Brill, 1978; 1979; Craven & Fos-
ter, 1992; Foster & Nascimento, 1994; Foster et al.,
1997). have considered alternative color invariances,
strictly weaker than color constancy, notably rela-
tional color constancy (Craven & Foster, 1992; Foster
& Nascimento, 1994; Foster et al., 1997). Many of the
issues raised here with respect to color constancy
could also be raised with respect to these alternative
invariances.

The Environment. It is often said that human color
vision is ‘approximately color constant’ (Hurvich,
1981, p. 199; Brainard, Brunt & Speigle, 1997). This
claim is misleading, if not further qualified, for the
degree of color constancy exhibited can be very slight:
“If changes in illumination are sufficiently great, sur-
face colors may become radically altered ... weakly or
moderately selective illuminants with respect to wave
length leave surface colors relatively unchanged ... but
a highly selective illuminant may make two surfaces
which appear different in daylight indistinguishable,
and surfaces of the same daylight color widely differ-
ent” (Helson & Judd, 1936). If one does not restrict the
range of lights and surfaces used in an experiment,
then, human color constancy can be close to non-exis-
tent.

What is usually meant by the claim that human
color vision is approximately color constant is that
there are circumstances, such as a range of of possible
illuminants and surfaces, similar to those encountered
in everyday life, where human color vision approxi-
mates perfect color constancy: “With moderate depar-
tures from daylight in the spectral distribution of
energy in the illuminant, external objects are seen ...
nearly in their natural daylight colors.” (Judd, 1940).
The term environment will be used throughout to spec-
ify a set of assumptions concerning possible illumi-
nants, surfaces, spatial layouts, etc. The central issues
of surface color perception include (1) the determina-
tion of the degree of color constancy exhibited by a
visual system for any given environment, and (2) the
determination of the environments under which human
color vision exhibits a given degree of color constancy.

Intrinsic Colors. The estimates of surface color
appearance produced by a visual system that is even
approximately color constant must depend on certain
physical spectral properties of the surface. These prop-
erties will be referred to as ‘intrinsic colors’ (Shepard,
1992) for convenience in describing the algorithms
below. The term ‘intrinsic colors’ will typically refer
to whatever it is we are trying to estimate by means of
a particular algorithm.

1. By “local spectral properties” is meant the bidirectional
reflectance density function at a point of the surface, defined
later in the chapter.



390 Physics-Based Approaches to Modeling Surface Color Perception

 Methodological Issues

Experimental Methods. There are several meth-
ods commonly used to operationalize and measure the
degree of ‘color constancy’ exhibited by human
observers: First, there is simultaneous asymmetric
color matching (Arend & Reeves, 1986; Arend et al.,
1991; Brainard, Brunt & Speigle, 1997) in which the
observer sees two regions of a scene comprising col-
ored patches that are illuminated with two different
illuminants. The observer adjusts a colored patch in
one region (under one illuminant) to ‘be the same color
as’ a fixed test patch in the second. Brainard, Brunt and
Speigle (1997) argue that, if we wish to study the per-
formance to be expected of an observer in a natural set-
ting, he should be free to move his eyes around in the
stimulus display. Nevertheless, the use of two illumi-
nants in a single scene raises questions concerning the
observer’s adaptational state if he is allowed freely to
look back and forth from one region to the other.

Second, there is successive asymmetric color
matching (Brainard & Wandell, 1991; 1992; Bäuml,
1995) in which the observer views a single scene under
first one illuminant and then a second. The observer
adjusts a colored patch under the second illuminant to
“be the same color as” a test patch seen under the first.
The adjustable patch is typically in the same location
as the test patch. Obviously, the observer’s match
depends on the observer’s ability to remember colors
accurately.

There is a potential confound with this method if
the scene remains unchanged while the illuminant
changes and the observer is aware that it does. Sup-
pose, for example, that the observer noted that the
fixed test patch is identical in appearance to a specific
patch under the first illuminant. He could then set
the adjustable patch to match in the second scene.
This strategy could result in a good approximation to
color constancy for visual systems that, in reality, have
none. The same confound is present in simultaneous
asymmetric color matching if the two scenes presented
are the same, and the observer knows that they are. In
general, the scene containing the test patch and the
scene containing the adjustable patch should be differ-

ent.
Third, there is achromatic matching (Helson &

Michels, 1948; Werner & Walraven, 1982; Fairchild &
Lennie, 1992; Arend, 1993; Bäuml, 1994; Brainard,
1998) where an observer adjusts a specified patch to
appear achromatic. This method provides less infor-
mation concerning the remapping of colors induced by
changes in illumination than the previous two meth-
ods. We know only that the observer’s setting corre-
sponds to some point in his achromatic locus, but not
which point. Nevertheless, the task is apparently very
easy to explain to naive observers and very easy to
carry out.

Andres and Mausfeld (described in Mausfeld,
1998) require observers to set a test patch to be in an
alternative color locus, comprising those colors that
are neither ‘reddish’ nor ‘greenish’. It is plausible that
certain colors or color loci such as the achromatic are
easier to remember, or to communicate to observers,
and that color appearance measures based on these loci
will be more stable.

Task and Instruction Dependence. Arend and
Reeves (1986; Arend, 1993) report that observers are
capable of reliably performing two different tasks in
asymmetric color matching of surfaces under refer-
ence illuminants and can be instructed to perform
either. They may equate the chromaticity of the light
(color signal in the terminology developed below)
radiating from the two patches, or they may choose the
setting consistent with the same surface viewed under
two different illuminants. Troost and De Weert (1991)
report that the effect of illuminant changes depends on
the task the observer undertakes. Such task depen-
dence and sensitivity to instructions only complicate
the interpretation of experiments on surface color per-
ception. Speigle and Brainard (1996, p. 171), however,
consider three tasks involving surface color judgment
(simultaneous asymmetric matches, achromatic
matches, color naming). They report that “... all three
tasks reveal similar and perhaps identical affects of the
illumination ... “ . Speigle (1998) also examined per-
formance in color naming and color scaling tasks and
reaches similar conclusions. While this issue is far

π
π
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from resolved, we may tentatively conclude that the
same ‘color percept’ mediates performance in many
tasks.

Simulations and Reality. In recent work, the stim-
ulus arrangement (‘scene’) is most often simulated on
a CRT display. The settings of the CRT’s guns are cho-
sen so as to produce the precise stimulation of the
observer’s photoreceptors that would result from a par-
ticular scene composed of specified physical surfaces
under specified illuminants.

Researchers working with physical surfaces and
lights in real scenes (Berns & Gorzynski, 1991; Brain-
ard, 1998) typically report greater degrees of color
constancy than do researchers working with simulated
scenes displayed on CRTs. Most recently, Brainard,
Rutherford and Kraft (1997) reported that they were
unable to reproduce on a CRT display the degree of
color constancy exhibited by observers in a real scene
despite every attempt to make the simulated and real
scenes identical. The degree of color constancy exhib-
ited depends on the realism of the simulation in ways
we do not yet understand, suggesting that there are
cues present in real scenes that we also do not under-
stand.

We know that it possible to choose viewing condi-
tions (an ‘environment’) where human observers
exhibit little or no color constancy (Helson & Judd,
1936). However, it is difficult, given the methodologi-
cal problems outlined above, to draw any firm conclu-
sions about the upper limit of performance in realistic
environments. The results of Brainard and colleagues
suggest that the upper limit to color constancy perfor-
mance is quite high. We do not yet know how high, or
what sorts of ‘environments’ produce optimal color
constancy performance.

 Environment I: Flat World

In this section I describe a model (‘an environ-
ment’) for surface color perception that abstracts away
the three-dimensional layout of surfaces in a normal
scene. The observer, in effect, views a scene painted on
a planar surface, or perhaps the inside of a large sphere

centered on him or her. The scene is illuminated uni-
formly by a single illuminant. There is no inter-reflec-
tion (‘mutual illumination’) among surfaces nor any
specularity. I’ll refer to the collection of assumptions
that make up this environment as Flat World. It is an
idealization of typical experimental arrangements that
have been used to measure human surface color per-
ception, and it differs in many respects from the ‘real-
istic scenes’ discussed in the previous section. Its
importance stems from both the close relation between
Flat World and previous experimental work and also
its importance to many of the models of color-constant
color perception or models of observed human perfor-
mance that we will review.

Illuminant. Light from a single, distant, punctate
light source (the illuminant) is absorbed by surfaces
within a scene and re-emitted. will be used to
denote the spectral power distribution of the incident
illuminant at each wavelength in the electromag-
netic spectrum. The re-emitted light that reaches the
observer will be referred to as the color signal. Its
spectral power distribution is denoted . It contains
the information about illuminant and surface at each
point in the scene that is available to the observer.

The color signals reaching the observer (Fig. 19.1)
are imaged onto a two-dimensional sensor array. The
sensor array can be thought of as simplified model of a
retina. We assign coordinates to each point in the
array. The exact choice of a coordinate frame is not
very important so long as each point in the sensor array
has a unique coordinate . The color signal arriving
at point on the sensor array is then denoted

.

Surface. Consider now a small patch of the surface
plane shown in Fig. 19.1 that is imaged at location
in the sensor array. Part of the light that is absorbed by
the surface patch is re-emitted and radiates in various
directions. We characterize the effect of the surface
patch on the resulting color signal by defining its sur-
face spectral reflectance which is denoted :

(1) .

E λ( )

λ

L λ( )

xy

xy
xy

L
xy λ( )

xy

S
xy λ( )

L
xy λ( ) E λ( )S

xy λ( )=
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The above equation is assumed to hold for all .
In environments more complex than Flat World, the

function for a surface patch depends on the view-
ing geometry: the location in three dimensions of the
surface patch, the locations of other surfaces, the loca-
tion of the observer, and that of the illuminant. We will
return to this point below when we consider a second
environment, Shape World.

Photoreceptor classes. The sensor array contains
multiple classes of sensors (photoreceptors). Let

denote the spectral sensitivity of
distinct classes of photoreceptors. For a trichro-

matic human observer,  is taken to be 3.
We assume that the initial information available to

a color vision system at a single retinal location is the
excitation of each of the  classes of receptor,

(2)

...

.

The numbers at each location form a vector
. A glance at Eqn 2 discloses

that the entries of the vector at each location
depend on both the light and the surface reflec-
tance .

The RGB Heuristic. There is a persistent belief
that crops up from time to time in the study of surface
color perception that might be called the ‘RGB Heuris-
tic’. Define the ‘color of the illuminant’ to be the
vector whose components, , are
given by,

(3) .

These would be the excitations of the photorecep-

tors while looking directly at the illuminant , or
when viewing a perfectly reflecting surface,

, under . Define the ‘color of the sur-
face’  to be  with components,

(4) .

These photoreceptor excitations correspond to
those for the surface viewed under a light with
constant, unit spectral power density.

Now, to what extent do the ‘color of the surface’
and the ‘color of the illuminant’ determine the
actual excitations corresponding to the surface viewed
under the illuminant (denoted )? It might seem
plausible that

λ
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Figure 19.1: Flat World. A model environment for surface
color perception that abstracts away the three-dimensional
layout of surfaces in a normal scene. The observer views a
scene painted on a planar surface. The scene is illuminated
uniformly by a single, distant, punctate illuminant. There are
no shadows, no inter-reflection (‘mutual illumination’)
among surfaces nor any specularity.
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(5)

and this sort of ‘approximation’ is widely used in
computer graphics for modeling the interaction of light
and surface. However, there is no mathematical reason
to expect Eqn 5 to hold, even approximately.

Evans (1948) gives a delightful counterexample in
the form of two color plates showing objects illumi-
nated under two lights of identical color appearance
( ) but decidedly different spectral power distribu-
tions. Ives (1912b, p. 70) noted that an artificial day-
light that matches daylight in color appearance need
not render colors correctly: “A white surface under this
[light] would look as it does under daylight but hardly
a single other color would.”

The accuracy (or inaccuracy) of the approximation
in Eqn 5 depends on the possible surfaces and illumi-
nants present in the environment. It is natural, then, to
ask what kinds of constraints on lights and surfaces are
needed in order for the approximation of Eqn 5 to
achieve a specified degree of accuracy, and also to ask,
whether physical surfaces in our environment satisfy
those constraints. We will continue this discussion in
von Kries Algorithms below.

 Linear Models: Mathematical Notation

The Geometry of L2. The functions ,
, and , introduced above, are assumed

to be square-integrable functions, defined next. This
assumption imposes no empirically significant con-
straint on the possible illuminants, surfaces, and recep-
tors present in a scene.

The space of square-integrable functions is
defined as follows. The magnitude or norm of a func-
tion , is defined to be,

(6) .

The set of square-integrable real functions are
those real functions which have finite magnitude, that
is, the integral in Eqn 6 converges to a finite limit. The
set of square-integrable functions form a vector space

, which has an inner product. The inner product of
two square-integrable functions , is defined
to be,

(7) .

The two functions are orthogonal precisely when
their inner product is 0.

is an example of a linear function space, a vec-
tor space whose elements are functions. Apostol
(1969, Chaps. 1 and 2) is an elementary introduction to
linear function subspaces. Strang (1988) is a standard
introduction to finite-dimensional linear algebra. See
Maddox (1970) and Young (1988) for more advanced
treatments. Wandell (1995) contains an introduction to
the use of linear function subspaces in vision.

Basis Functions. It is possible to show (Young,
1988) that we can find square-integrable functions

, such that for any light ,
there are unique real numbers such that

(8) .

The functions form a basis of the linear
function space . Just as in the finite dimensional
case, there are infinitely many possible choices of a
basis for . Our choice of basis for the lights
will be guided by empirical considerations described
below.

Coordinates. The real numbers are the coordi-
nates corresponding to the light in the space .
The infinite vector determines

. Not every function in corresponds to a phys-
ically possible light ; some represent spectral
power densities with negative power at some point of
the visible spectrum. The ‘physically-realizable’ lights
form a convex set in analogous to the region within
the spectral locus in CIE coordinates (Wyszecki &
Stiles, 1982a).

The basis could also
serve to express the coordinates of the surface reflec-
tances. I will instead choose a second basis , i =

ρk
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1, 2, 3, ... to express the coordinates of the surface
reflectances :

(9) .

The infinite vector
determines . The

choice of this second basis will also be guided by
empirical considerations. Note that while the coordi-
nates of vary with location, the fixed
basis elements do not. The same basis is used to model
surface reflectance at every location in the scene.

History. Yilmaz (1962) first used truncated Fourier
series expansions to model illuminants and surface
reflectances across the visible spectrum, and Sällström
(1973) first framed the problem in terms of truncated
expansions using arbitrary bases. Brill (1978; 1979),
Buchsbaum (1980), and Maloney and Wandell (1986;
Maloney, 1984) independently developed this same
representation of illuminants and surface spectral
reflectance, and their interactions. Maloney and Wan-
dell (1986) termed these constraints on light and sur-
face, linear models.

Light-Surface Interaction. Substituting Eqs 8 and
9 into Eqn 2, we get,

(10)
.

The integrals contain
only fixed elements independent of the particular
scene viewed. Setting

, Eqn 10 becomes,

(11) .

The values γijk are fixed, known, and independent
of any particular scene, once the bases have been
selected. It should be clear that the specific illuminant
enters into the visual process only through its coordi-
nates εi, i=1, 2, ..., and the specific spectral reflectance
functions only through their coordinates at each loca-

tion, , j=1, 2, .... . The equation above is exact
within the framework of assumptions adopted so far.
Eqn 11 merely restates Eqn 2 with respect to two infi-
nite-dimensional coordinate systems; it can no more
be solved for information about the surface reflectance
(about the σxy) independent of the light than could Eqn
2. Any of the coordinates, could serve as an
intrinsic color (see Terminology above) – if we could
reliably estimate it despite changes in the illuminant.
But, in the equation above, information about light and
surface is irreversibly tangled.

We next approximate the infinite summations above
(that perfectly capture light and surface reflectance) by
truncated, finite summations:

(12)

(13)

The class of lights that can be represented in this
way for a fixed value of M, and fixed basis elements
E1(λ), E2(λ), ... EM(λ) is a finite-dimensional linear
function subspace (‘linear model’) of L2 that has
dimension M. A linear function subspace of surface
reflectances (‘linear model’) with dimension N is
defined analogously.

The finite-dimensional vectors ε=[ε1, ... , εM] and
will be referred to as the

‘coordinates’ of light and surface within their respec-
tive linear subspaces. The subscripted variables Eε(λ)
and will be used throughout to denote lights
and surfaces constrained to lie in finite-dimensional
linear models.

Linear Models: Fits To Empirical Data

Surfaces. The algorithms described in the next sec-
tion depend crucially on the assumption that we can
approximate real illuminants and surfaces by linear
models with low values of and . In this section
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we review work concerning the realism of such models
as descriptions of empirical surfaces and illuminants.
An expanded version of this section may be found in
Maloney (1998).

Fitting Methods. I describe here how to fit an opti-
mal least-squares linear model to the set of empirical
surface reflectances described in Vrhel, Gershon and
Iwan (1994). More sophisticated methods permit
simultaneous choice of optimal linear models for any
sets of empirical illuminants and surfaces (Vrhel &
Trussel, 1992; Marimont & Wandell, 1992). I will
refer to the data set of Vrhel, Gershon and Iwan (1994)
as the Kodak Data.2

Suppose that we have a set of empirically-measured
surface spectral reflectances, , ν = 1, 2, …, V,.
We will treat a sampled surface reflectance function,
sampled at wavelengths , as a step function that is
constant between and , and has as its con-
stant value, the sampled value at . These step func-
tions have values defined at all and their use allows
me to use the same notation and conventions for
empirical and theoretical surface spectral reflectance
functions.

For any fixed value of , and any choice of basis
functions we can compute, by lin-
ear regression (Maloney, 1986), the weights in the
truncated series of Eqn 13, that minimize the least
square error,

(14)
.

We now wish to choose the basis functions
to minimize the overall

error,

(15) .

The optimal basis functions will be each orthogo-

nal to all of the others. It is convenient to assume that
they are scaled to be of unit magnitude. Several
authors fit empirical data using an alternative linear
model to that of Eqn 13:

(16)

where is the mean of the . This model
is presupposed by principle component analysis (Mar-
dia, Kent & Bibby, 1979) and authors who report using
principle components analysis to fit their data will
likely assume the model of Eqn 16, not that of Eqn 13.

The models are different. Note, in particular, that
the mean in Eqn 16 will not, in general, be orthogonal
to the remaining basis elements or independent of
them. It is even possible that be identical to

, an undesirable outcome. Further, with Eqn 13,
the scaled copies of any model surface reflectance

are automatically in the space of model sur-
face reflectances, a scaling property that does not, in
general, hold for Eqn 16. Many authors (e.g. Judd,
MacAdam & Wyszecki, 1964) normalize the vectors
in their data set before fitting them. They may normal-
ize the data vectors to have norm 1, or to have
value 1 at a specified wavelength. They then fit the nor-
malized data, using principle components, and, in
reconstructing the original data, scale the mean by a
value ,

(17) .

which is simply the inverse of the constant by
which the original measured surface reflectance was
scaled in normalizing it. Eqn 17 and Eqn 13 appear to
be identical (except for a change in the index), but,
again, the vectors in Eqn 17 need not be orthogonal.
Accordingly, I use the models of Eqs 12 and 13 in the
sequel.

For empirically measured sets of surface reflec-
tance functions, the optimal basis consistent with Eqs
12 or 13 can be readily computed by standard linear
algebra methods using the singular value decomposi-
tion (Mardia, Kent & Bibby, 1979). Once we have
computed the optimal basis , we

2. The Kodak Data and other sets of surface spectral reflec-
tance functions collected by various authors are available
from ftp.cns.nyu.edu:pub/ltm/SSR via anonymous ftp. There
are currently no large set sof illuminants publically available.
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can compute the optimal approximation by lin-
ear regression for each of the empirical functions

and compare it to the original.

The Kodak Data Set. Fig. 19.2 contains plots of
six of the surfaces in a collection of 170 surfaces mea-
sured by Vrhel, Gershon and Iwan (1994) and approx-
imations3 to those surfaces with . The two
plots in Fig. 19.2A correspond to the two surfaces
whose ’s fell at the first quartile of the 170 values of

. That is, about 25% of the surfaces in the sample
have smaller (better) values of . The two plots in
Fig. 19.2B correspond to the two surfaces whose ’s
fell at the third quartile of the 170 values of . About
75% of the surfaces in the sample were better fit. The
two plots in Fig. 19.2C correspond to the two surfaces
with the largest values of  (‘the worst fits’).

Fig. 19.3 contains analogous plots for .
These results illustrate the conclusion of Vrhel, Gers-
hon and Iwan (1994), that linear models with
provide poor approximations to the measured surface
reflectances in their data set while, with , the
approximations are good.4

Fig. 19.4 shows the ‘variance accounted for’ (the

3. Vrhel, Gershon and Iwan (1994) used principle compo-
nent analysis to analyze this data. I refit their data by the
least-square model for reasons described in the main text and
so that it could be more readily compared to earlier work.
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Figure 19.2: Surface spectral reflectance data from Vrhel, Gershon and Iwan (1994) (plotted with filled circles)
and reconstructions with three basis elements. The horizontal axes are wavelength, in nanometers, the vertical,
relative reflectance. A: The two fits at the first quartile of Ξv. B: The two fits at the third quartile. C: The worst
two fits. See text for details.
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term normalized) as a function of for the data of
Vrhel, Gershon and Iwan (1994). The results of Mal-
oney (1986) for the Krinov (1947) data set are also
plotted in Fig. 19.4. It is clear that the fits to the Krinov
data set reported by Maloney understate the difficulty
of modeling empirical surface reflectances with low-
dimensional linear models (if we take the Vrhel, Gers-
hon & Iwan data as representative of empirical surface
reflectances). The results, however, do confirm the
conclusions drawn in Maloney (1986): “... the number

of parameters required to model ... spectral reflec-
tances is five to seven, not three” (Vrhel, Gershon &
Iwan, 1994, p. 1674). The failure to find highly accu-
rate approximations to real surfaces with will
have implications for the models and algorithms
reviewed below which we will return to in Model Fail-
ure and Approximate Color Constancy.

History. Cohen (1964) used principle components
analysis (Mardia, Kent & Bibby, 1979) to fit the sur-
face spectral reflectances of a subset of the Munsell
color chips. He concluded that the mean surface reflec-
tance and as few as two additional components pro-4.  Vrhel, Gershon and Iwan (1994) report that roughly

seven principle components suffice. The choice of 7 or 8 or
9 is somewhat arbitrary. See Fig. 19.4.
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Figure 19.3: Surface spectral reflectance data from Vrhel, Gershon and Iwan (1994) (plotted with filled circles)
and reconstructions with eight basis elements. The horizontal axes are wavelength, in nanometers, the vertical,
relative reflectance. A: The two fits at the first quartile of Ξv. B: The two fits at the third quartile. C: The worst
two fits. See text for details.
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vided good fits to the Munsell surface reflectances.
Maloney (1986) refit the same data set using Eqn 13
and the criterion in Eqs 14 and 15, and measured how
well the ‘Munsell basis’ fit a a large set of surface
reflectance functions collected by Krinov (1947/
1953). The results of this work were described above.
Parkkinen, Hallikainen and Jaaskelainen (1989) mea-
sured the surface spectral reflectance of a large collec-
tion of Munsell chips and fit them using principle
components analysis. As many as 8 basis elements
were needed to permit accurate fits to the surfaces.

Illuminants. The fitting methods and models for
illuminants are identical to those for surface reflec-
tance discussed above. Judd, MacAdam and Wyszecki
(1964) report summary results for a large set of mea-
sured spectral power distributions of daylight (princi-
ple components fit). Their results and later, more
extensive work by other researchers (Das & Sastri,
1965; Sastri & Das, 1966; 1968; Dixon, 1978) indicate
that sampled daylight may be well described by a
small number of basis elements (possibly as small as

). Romero, Garciá-Beltrán and Hernández-
Andrés (1997) sampled the spectral power distribu-
tions of daylight from 400 nm to 700 nm over a period
of four days in Granada, Spain. They performed a prin-

ciple components analysis on the resulting 99 spectral
power distributions, each normalized to magnitude 1
(in ). They found that approximations to the mea-
sured spectral power distributions using three basis
elements accounted for 0.9997 of the variance. The
number of samples collected was not large, the time
period over which they were collected was short, and
it is not clear how representative the climate of Gran-
ada is of climates in other regions of the world. Never-
theless, the fit is remarkable, and their results, together
with the results of earlier research, indicate that low-
dimensional linear models provide very good approx-
imations to daylight spectral power distributions.

Issues in Fitting Empirical Data. The results of
this section suggest that surface reflectance functions
and illuminants in ‘natural environments’ are con-
strained. This idea is not new. Several authors (Stiles,
Wyszecki & Ohta, 1977; Lythgoe, 1979; MacAdam,
1981) have expressed the opinion that empirical sur-
face reflectances are smooth, constrained curves. Land
(1959/1961) asserts that ‘Pigments in our world have
broad reflection characteristics.’ Still, there are many
open questions concerning the nature and importance
of the constraints on ‘natural’ surfaces and light and
how they might best be modeled. In the remainder of
this section I raise some of them.

Non-Linear Models. Only linear models are con-
sidered here as candidate representations for natural
surfaces and reflectances. It is certainly possible that a
non-linear model with  parameters such as,

(18) .

might provide better approximations to empirical
surface reflectance functions than any linear model
with parameters. There seems to have been no sys-
tematic attempt to find non-linear models that provide
better fits than linear models. Many of the algorithms
below could be readily altered to take advantage of a
nonlinear constraint such as that embodied in Eqn 18.

Loss Functions. The use of the least-square error

Kodak Data (Vrhel et al, 1994)

Krinov Data (Maloney, 1986)
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measure in fitting models to data is questionable.
An advantage of the least-square error measure is that
it is independent of the properties of any particular
visual system. Any conclusions drawn are statements
about the empirically measured surface spectral reflec-
tances themselves, and, in attempting to understand
the physical bases for the empirically-observed con-
straints on surfaces, this is desirable (Maloney, 1986).

Yet it is also desirable to employ error measures
that reflect the sensitivity of specific visual systems.
Human vision, for example, is likely to be very insen-
sitive to failures in approximation near the extremes of
the (human) visible spectrum. Maloney (1986) refit the
Krinov data with error weighted by human photopic
visual sensitivity (See Wyszecki & Stiles,
1982a). He compared the variance accounted for by
the weighted fit and the unweighted fit and concluded
that the weighted fit accounted for markedly more of
the variance. That is, the least-square approximations
to the Krinov data were enhanced by the spectral prop-
erties of the human visual system. A better approach
(Dannemiller, 1992) is to measure the ability of an
ideal-observer to discriminate approximations from
real surface functions. Marimont and Wandell (1992),
developed fitting techniques that took into account
human visual sensitivity, and derived basis functions
that , as expected, approached zero at the ends of the
visible spectrum.

It is important to consider both the nature of the
physical constraint on surfaces (independent of any
visual system) and also the impact of the constraint on
visual performance for particular visual systems.

Theoretical Approaches. It is not clear what con-
stitutes a ‘natural environment’ for human vision or
how to sample it, what surfaces should be included,
and what weight each should be given. When we con-
sider other biological visual systems, the problem is
scarcely less difficult. It is, therefore, desirable to con-
sider why at least some classes of physical surfaces
exhibit physical constraints and what these constraints
might be. If we understood the theoretical bases for
these constraints, we need not wonder whether they
might vanish with the next collection of empirical sur-

face reflectance functions.
Stiles, Wyszecki and Ohta (1977) and, later, Buchs-

baum and Gottschalk (1984) suggested that many sur-
face reflectance functions are ‘low-pass’: their surface
spectral reflectance functions, as a function of wave-
length, are approximately low-pass. Maloney (1984;
1986) tested this ‘low-pass hypothesis’ for the Krinov
data and concluded that the Krinov reflectances con-
tained little spectral energy above a band-limit corre-
sponding to three samples. He suggested specific
physical processes responsible for this observed ‘low-
pass’ constraint for organic colorants.

Mollon, Estévez and Cavonius (1990) argue that the
low-pass constraint observed in the Krinov data is sim-
ply an artifact of the measurement process employed
by Krinov. Krinov measured not isolated, homoge-
neous surfaces, but natural formations, each compris-
ing many distinct materials. The spatial mixing of
distinct surface spectral reflectances, they argue, leads
to measured surface spectral reflectances that have
been effectively passed through a low-pass filter and,
in contrast, “[i]f the measurement is confined to part of
an individual leaf or individual fruit, then fine detail is
readily apparent in the spectra of the world of
plants.(p. 129)”. This issue remains to be resolved.
However, the first eight basis elements of the Vrhel,
Gershon and Iwan (1994) data (shown in Fig. 19.5)
exhibit the same band-pass form with increasing peak
frequencies asfound by Maloney (1984; 1986) with the
Krinov data. Further discussion of the low-pass
hypothesis may be found in Maloney (1998).

Flat World Algorithms

This section describes algorithms that presuppose a
Flat World environment with surfaces and illuminants
perfectly described by low-dimensional linear models
( ).

We substitute from Eqn 12 for in Eqn
2, and from Eqn 13 for in the same Eqn
2. We then rewrite Eqn 2, expressing the basic rela-
tions among the light, surface reflectances, and recep-
tor responses, as the matrix equation

Ξ

V λ( )

M N 3= =
Eε λ( ) E λ( )

Sσ λ( ) S λ( )
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(19)

where is, as above, the vec-
tor formed from the receptor excitations of the
receptors at location . The matrix is by ,
and its ’th entry is of the form

. Note that the matrix
depends only on the light (as the basis elements and
receptor spectral sensitivities are fixed, indepen-
dent of any particular scene). This matrix captures the
role of the light in transforming surface reflectances at
each location  into receptor excitations.

The coordinates (or any
convenient transform of them) could serve as intrinsic
colors, i.e., the quantities we seek to estimate given the

at each location. Various limits on recovery of the
are dictated by Eqn 19. We consider the limits on

recovery when the light on the scene is assumed to be
known, and when the light on the scene is unknown.

In the simple case in which the ambient light, and
(therefore) the lighting matrix , is known, we see
that to recover the weights that determine the sur-
face reflectance we need merely solve a set of simulta-
neous linear equations. The recovery procedure
reduces to matrix inversion when . That is,

(20)

where the quantities on the left hand side are all known
or computable from known quantities. Recovery is
also possible when whenever corresponds
to an injective (1-1) linear transformation. If is less
than , Eqn 19 is under-determined and there is no
(unique) solution. (See Maloney (1984) for a discus-
sion of the invertibility of the various matrices refer-
enced above and in the sequel.)

If the ambient light is unknown then it is easy to
show that we cannot do as well: we cannot, in general,
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recover the ambient light vector or the spectral
reflectances even when , so that matrix is
square. Given any collection of photoreceptor excita-
tions across a scene, there are, in general, many
possible choices of surface reflectances and illu-
minant that satisfy Eqn 19. Since any such choice of
a light vector and corresponding surface reflectances

could have produced the observed receptor exci-
tations, we cannot determine which, in fact, did. Even
if we restrict attention to the convex subset of ‘physi-
cally-realizable’ lights, such confusions are still possi-
ble for many choices of lights and surfaces.

Each of the linear models algorithms, described
next, takes a distinct approach to estimating the .

The Reference Surface Algorithms of Brill and
Buchsbaum. Brill (1978; 1979) considers the case
where and there are three reference
surfaces available in the scene at known locations ,

and . (Brill’s algorithm requires no restriction
on the illuminant: .) Then the receptor exci-
tations at these locations (among others) are
known and we have the simultaneous matrix equa-
tions:

(21)

Both sides of each equation are known. If the refer-
ence surfaces are linearly inde-
pendent, then it is possible to solve for (if the
are taken as the basis of the space of surfaces, then the
matrix whose columns are is
the desired matrix ). If another basis is used, then

is simply the inverse of the matrix premulti-
plied by the matrix that changes from the basis to
the second basis (See Strang, 1988). Once is
known, we invert Eqn 19 and solve for the coordinates
(intrinsic colors) of all sources in the scene.

Buchsbaum (1980) assumes that ,
and requires that the location of one reference surface

be known. To explain his algorithm, we first
define

(22)

,

the light matrix for each of the known basis
lights. Then, the quantities

(23)

are all known once the reference surface is
given. These are the receptor excitations correspond-
ing to the reference surface under each of the basis
lights in turn. It can be shown that (See Maloney, 1984,
Chap. 3),

(24) ,

giving the following expression for the receptor
excitation of the reference surface under an unknown
light :

(25)
.

If the fixed vectors are linearly
independent, then the above equation can be solved for

given . (The coordinates of the light ε are pre-
cisely the coordinates of the reference surfaces’ recep-
tor excitations with respect to the basis

.) In summary, a single reference
surface permits estimating the light when

. Once is known, Eqn 19 may
be solved for the intrinsic colors of surfaces.

The algorithm of Brill can be generalized to the
case where takes on any arbitrary value;
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linearly independent reference surfaces are then
required. Buchsbaum’s algorithm can be generalized
to arbitrary values and it still requires
only a single reference surface. Both algorithms can be
applied to a visual system with any number of types of
receptors .

Note that Brill’s algorithm makes no assumptions
about the dimensionality of the linear model describ-
ing the illuminant ( ). It can be used to estimate the
matrix in environments where no restrictions are
placed upon the illuminant . Brill’s algorithm
can, therefore, be used in environments where little is
known about the illuminant. Of course, if the estimated

is not invertible, then the surface parameters
cannot be recovered by any method.

In Buchsbaum’s algorithm, the three fixed receptor
excitations generated by the sin-
gle reference surface under the known basis lights
serve much the same role as Brill’s three reference sur-
faces: they ‘pin down’ the light matrix.

Buchsbaum’s Gray World Algorithm. In either
Brill’s or Buchsbaum’s algorithm, the receptor excita-
tion corresponding to one reference surface may be
replaced by the average of the receptor excitations
catches across a portion of the scene , provided
we know the true mean of the intrinsic colors
across that part of the scene.

This substitution is an obvious consequence of the
linearity of Eqn 19: if, for all ,

(26)

then

(27)

and, dividing both sides by the number of locations
in the set ,

(28) .

In particular we can use the mean across the entire
scene. If, for example, we assume that the mean intrin-

sic color of a scene is a specific ‘gray’, then this ‘gray’
, paired with, , the mean of the observed

receptor excitations the scene, permit estimation of the
illuminant using Buchbaum’s algorithm. The assump-
tion concerning the mean of the intrinsic colors in a
scene is sometimes termed the Gray World assumption
(Buchsbaum, 1980, p. 24): “It seems that arbitrary nat-
ural everyday scenes composed of dozens of colour
subfields, usually none highly saturated, will have a
certain, almost fixed spatial reflectance average. It is
reasonable that this average will be some medium
gray...” D'Zmura and Lennie (1986, p. 1667) make a
similar claim “... we expect that the space-averaged
light from most natural scenes will bear a chromaticity
that closely approximates that of the illuminant.” The
‘Gray World’ assumption is close in spirit to Helson’s
‘adaptation level’ (Helson, 1934).

The term ‘Gray World Assumption’ is misleading
in two senses. First, for Buchsbaum’s algorithm to
work, the known average of the intrinsic surfaces need
only be known; it need not be ‘gray’. If the average of
the intrinsic colors across the scene corresponds to a
‘green’ surface, the algorithm of Buchsbaum can as
easily make use of a ‘Green World Assumption’. Sec-
ond, the average need not include the entire scene: any
portion of the scene (e.g. the ground plane) can serve
as an average reference. From this point on, I will refer
to the Gray World Assumption in this wider sense as
the ‘Stable Mean Assumption’.

The ‘Stable Mean Assumption’ is, fundamentally, a
claim about the physical environment as seen through
a particular set of photoreceptors, and such a claim is
testable. It is obvious that a Stable Mean algorithm
such as Buchsbaum’s will erroneously ‘correct’ any
deviation of the mean intrinsic color away from the
known reference color as readily as it corrects an
imbalance induced by the illuminant. The algorithm is
of value to the extent that typical excursions of the
mean intrinsic color away from the reference are small
and/or infrequent compared to the magnitude of
changes in the illuminant. Empirical tests of these
claims are lacking.

It should be noted that the Stable Mean Assumption
is specific to a particular set of photoreceptor types. It
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is entirely possible that a Stable Mean Algorithm may
fail dramatically for one species and succeed for
another in the same environment. Discussion of the
status of the ‘Stable Mean Assumption’ in human
vision will be postponed until von Kries Algorithms.

The use of reference surfaces in two of the algo-
rithms above make them implausible candidates for a
model of human color vision. The remaining algo-
rithms described in this section illustrates ways of dis-
pensing with reference surfaces altogether. Some of
the algorithms first estimate the coordinates of the illu-
minant and then employ Eqn 20 to solve for intrinsic
colors. Others estimate and the simultaneously.
Only Brill’s algorithm avoids estimating and instead
estimates directly. The remaining algorithms differ
mainly in how they go about determining the illumi-
nant.

The Subspace Algorithm of Maloney and
Wandell. Maloney and Wandell (1986) assumed that
there are more classes of receptors than dimensions in
the linear model of surface reflectances: . Sup-
pose that there are linearly independent
receptors available to spectrally sample the image at
each location. They proposed a method for computing
the light coordinates and the dimensional surface
reflectance vectors given the dimensional
receptor response vector at each location. The
matrix is then a linear transformation from the -
dimensional space of surface reflectances into the

-dimensional space of receptor excitations
. As is a linear transformation, the receptor

responses must fall in a proper subspace of the recep-
tor space. In the case , , the vectors

must lie on a plane in the three-dimensional
receptor space In the case , , the vec-
tors must lie in a three-dimensional subspace (a
‘3-space’) of the four-dimensional receptor space. The
particular subspace is determined by and therefore
by the lighting parameter . That is, as is varied for
a fixed set of surfaces, the subspace spanned by
moves about in the receptor space.

. Maloney and Wandell (1986) proposed a two-step
procedure to estimate normalized light and surface

reflectance properties. First, they determine the plane
spanning the receptor excitations. Second, knowledge
of the plane permits recovery of the normalized ambi-
ent light vector by computations described by Mal-
oney (1984). These computations use the vector at the
origin normal to the subspace spanned by the receptor
receptor excitations. This vector serves a role analo-
gous to the single reference surface in Buchbaum’s
algorithm: it is a recoverable ‘landmark’ that moves
around as a function of the illuminant. By requiring

, Maloney and Wandell are able to replace
Buchsbaum’s reference surface with a geometrical
landmark that serves the same purpose.

Note outcome of the algorithm consists of estimates
of the intrinsic colors of surfaces known up to a single
common ‘lightness’ scaling factor . That is, if is
the true light and are the true
intrinsic colors at locations, the algorithm returns a
normalized estimate of the light and corre-
sponding estimates of the surface properties

where is
a unknown scaling factor common to all the estimates.
(In contrast, the ‘reference surface’ algorithms above
can use the reference surface to estimate the absolute
power output of the illuminant.)

The Chromatic Aberration Algorithm of Funt
and Ho. Ho (Ho, 1988; Funt & Ho, 1989; Ho, Funt &
Drew, 1990) used the chromatic aberration inherent in
lens systems to derive an estimate of the illuminant
parameters up to an unknown scale factor, and
showed that a visual system with only one receptor
class can estimate the difference between the
color signals radiating from two adjoining surfaces
separated by a sharp edge. Let and denote the
two surface reflectance functions. Then,

(29) ,

and the estimated color signal difference can be
used to solve for  up to an unknown scale factor.

Bayesian Algorithms. D'Zmura, Iverson and
Singer (1995) and Freeman and Brainard (1995;
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Brainard & Freeman, 1997) reformulate the problem
of estimating illuminant and surface within the linear
models framework as a problem in Bayesian statistical
decision theory. This sort of approach presupposes,
first of all, that the prior distribution of possible scenes
composed of illuminants and surfaces, and the likeli-
hood function, the likelihood of any possible retinal
excitation patterns conditional on a particular scene,
are both known.

We need not review the details of their work except
to note, first of all, that essentially any algorithm that
can be formulated as a maximum likelihood estimate
can be trivially reformulated as a Bayesian estimator
that can take advantage of knowledge of the prior dis-
tribution (Blackwell & Girshick, 1954; Ferguson,
1967). That is, each of the algorithms reviewed here
has a Bayesian counterpart that makes use of the
known prior distribution. Second, the Bayesian esti-
mator can do no worse than its maximum likelihood
counterpart (Blackwell & Girshick, 1954; Ferguson,
1967). That is, there is no point in evaluating them
computationally except to determine how much better
they perform. Last, the expected advantage in perfor-
mance depends on the prior distribution of illuminants
and surfaces. The true prior distribution of illuminants
and surfaces in realistic environments is, currently,
unknown. Both D'Zmura, Iverson and Singer and
Freeman and Brainard simply assume prior distribu-
tions of lights and surfaces. Both, in particular, make
the unrealistic assumption that surface patches at dif-
ferent locations in a scene are statistically indepen-
dent.

Although there is little to be learned from their
computational results, the approach they propose is
sound and their computational experiments potentially
important if redone with accurate estimates of prior
distributions in realistic environments.

Multiple View Algorithms. Tsukada and Ohta
(1990) and, independently, D'Zmura (1992) examined
the information made available by viewing the same
scene under multiple successive illuminants. Let the
coordinates of the two illuminants be and .
D'Zmura first sets up the equations

and , describing the photoreceptor
excitations corresponding to the surfaces at each loca-
tion illuminated by each the two illuminants. He then
shows how to solve these simultaneous equations for
the . In particular, for , two
views permit recovery of the intrinsic colors up to
an overall unknown scaling factor. Thus, if a trichro-
matic visual system can arrange to view a scene under
two successive illuminants, it can recover the surface
descriptors up to an overall scaling. In a later section I
describe a second application of these results (The
Shadow Algorithm of D'Zmura).

The method of D'Zmura (1992) is a generalization
of the subspace method of Maloney and Wandell. In an
impressive series of articles, D'Zmura and Iverson
(1993a;b; 1994; Iverson & D'Zmura, 1995a;b) study
visual systems with photoreceptors in the Flat
World environment with surface reflectance modeled
by an -dimensional linear model and illuminants
modeled by an -dimensional linear model. They
derive necessary and sufficient conditions for recovery
of surface and light parameters when the same scene is
seen under distinct illuminants including the case

 treated by Maloney and Wandell.

Illuminant Estimation. As discussed above, sev-
eral of the algorithms above so far share a common
form. Each seeks an explicit estimate of the illuminant
parameters using the constraints imposed by Flat
World and Linear Models. The results of Gilchrist and
colleagues (Gilchrist, 1977; 1980; Gilchrist, Delman
& Jacobsen, 1983; See also Gilchrist, 1994). demon-
strate that lightness perception depends on the visual
system’s representation of the three-dimensional lay-
out of scenes. In the next section, we will examine
more complex, three-dimensional environments where
there are additional cues available concerning the illu-
minant.

Environment II: Shape World

At this point, we must expand the mathematical
models of illuminant and surface reflectance devel-
oped in the Flat World environment to include more
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realistic models of light/surface interaction in a three-
dimensional scene. The coordinate in now
specifies both a location on the sensor array (ret-
ina) and the surface point imaged on the sensor array
at that location. We allow only one surface point cor-
responding to each retinal location (ignoring the possi-
bility of transparency). In most of this section, it is
assumed that there is a single, punctate illuminant dis-
tant from the observer and the scene (for some of the
discussion, there will be a small number of illumi-
nants).

The algorithms in this section share the same com-
mon goal as the algorithms described in the previous.
All describe a particular computation designed to cap-
ture information about the illuminant . Some of the
algorithms use this information to compute and
invert it, just as in the algorithms described above.
Others simultaneously estimate illuminant and surface
descriptors. The algorithms share a second common
feature: each goes beyond the assumptions of a simple
Flat World environment, basing its estimate of the illu-
minant on information only available from surfaces
arranged in three dimensions.

Fig. 19.6 indicates some of the additional structure
introduced into the environment: shading, specularity,
mutual illumination, etc. The shape-from-shading lit-
erature is a source of models for illuminant-surface
interaction in three-dimensional scenes (see Horn &
Brooks, 1989; in particular, Horn & Sjoberg, 1989).
This new environment will be referred to as Shape
World.

Bidirectional Reflectance Density Functions.
The surface spectral reflectance function of Flat

World is replaced by a bidirectional reflec-
tance density function (BRDF),

. is a unit normal vector
to the surface at location . is a unit vector from
the surface at in the direction of the visual system
(the sensor array) and is the unit vector from the
surface toward the (punctate) illuminant. The inset to
Fig. 19.6 illustrates the interrelations among these vec-
tors. Horn and Sjoberg (1989) provide a more detailed

description of the BRDF and further references.
The possible interactions between light and surface

are complex (Nassau, 1983; Weisskopf, 1968). Lee,
Breneman and Schulte (1990) summarize some of the
common models of BRDFs. Hurlbert (1998) discusses
many of the models of BRDFs in use in computer
vision and computer graphics. Oren and Nayar (1995;
Nayar & Oren, 1995) review more recent work and
propose a new model of the BRDF that takes into
account the roughness of the surface at fine scales.
Lee, Breneman and Schulte (1990) report measure-
ments of BRDFs of a small number of surfaces, which
we will return to below. There is currently no large col-
lection of empirically-measured BDRFs available to
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Figure 19.6: Shape World. A model environment for surface
color perception that includes explicit representation of
light/surface interaction in a three-dimensional scene,
including shadows, inter-reflection (‘mutual illumination’)
among surfaces, and specularities. See text for an explana-
tion. The inset illustrates the coordinate system used in
expressing the relation between the illuminant, surface, and
visual system.
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test existing or new models.
I will not attempt to summarize the literature on

models of BRDFs, which is extensive. Instead, I will
describe only the properties of BRDFs that are needed
in order to understand the Shape World algorithms
reviewed below.

Geometry-Reflectance Separability. The first
property we consider is geometry-reflectance separa-
bility.

(30)

It states that the effect of a change in viewing con-
ditions , , is simply to scale the surface
reflectance function (Shafer, 1985). will be
referred to as the spectral component of the BRDF.
The surface spectral reflectance of Flat World
is, of course, the spectral component in Shape
World, scaled by the geometric factors. It will cause no
confusion to use the same notation for the Flat World
spectral sensitivity function and the spectral compo-
nent of a BDRF in Shape World (when geometric-
reflectance separability holds).

If there are multiple illuminants or non-punctate
illuminants, the color signal is the superposi-
tion of the color signals corresponding to each illumi-
nant point. It is possible that light from an illuminant
can be successively absorbed and re-emitted by more
than one surface before reaching the sensor array. In
such cases, the light emitted from one surface acts as
an illuminant to a second and is treated accordingly.

 Diffuse-Specular Superposition. Surfaces often
do not satisfy geometry-reflectance separability. Sha-
fer (1985; Klinker, Shafer & Kanade, 1988) suggested
that many surface BRDFs (corresponding to dielectric
(non-conducting) surfaces such as plastics) may be
represented as the sum of two surface BRDFs each of
which satisfies geometric-reflectance separability:

(31)

The first term in the summation is termed the diffuse
component, the second, the specular component.

is the surface spectral sensitivity
function of a perfect reflector, G (.,.,.,) is the geometric
function for a diffuse surface, and G’ (.,.,.,) the geo-
metric function for a specular (mirror-like) surface.
The weights and control the diffuse-specular
balance. Note that is the same at every loca-
tion while the may vary. The constraint on
surfaces embodied in Eqn 31 will be referred to as the
diffuse-specular superposition property. The Neutral
Interface Model of Lee, Breneman and Schulte (1990)
exhibits this property. I will refer to in Eqn 31
as the spectral component of the BDRF.

Lee, Breneman and Schulte (1990) tested whether
surfaces satisfied the diffuse-specular superposition
property. They measured the spectral reflectance func-
tions of nine surface materials for different viewing
geometries. They found that the property was satisfied
for some of the surface materials (including ‘yellow
plastic cylinder’, ‘green leaf’, and ‘orange peel’) but
not all (e.g. ‘blue paper’, ‘maroon bowl’). Tominaga
and Wandell (1989; 1990) report empirical tests of the
property as well.

In the description of the algorithms, I will assume
that . That is, the possible illumi-
nants are drawn from a linear model with three param-
eters , the visual system has three classes
of photoreceptor, and the possible spectral compo-
nents of surfaces are also drawn from a linear model
with three parameters . I will generally
assume that either geometric-reflectance separability
or diffuse-specular condition holds. The term viewing
geometry refers to the relative positions of surfaces,
illuminants, and the observer in Shape World.

Viewing the Light/White Surface. The first
model we consider is one where the observer is able to
look around and somehow identify the illuminant
itself. Viewing the illuminant is equivalent to having a
single white reference surface in Buchsbaum’s algo-
rithm. We can solve directly for the light. Alterna-
tively, the observer may attempt to identify a perfectly
reflective (‘white’) patch in the scene and use it just as
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a glimpse of the illuminant. These approaches fail, of
course, when the scene contains no white patch or
directly observable illuminant, or when the observer
cannot identify one or the other.

Specularity Algorithms. Lee (1986) and D'Zmura
and Lennie (1986) proposed algorithms based on the
diffuse-specular superposition property. Fig. 19.7
illustrates the key idea. Suppose we have two objects,
each with a uniform diffuse-specular surface and with
sufficient variation in the viewing geometry so that the
color signals from the object are not uniform. Further,
assume that the objects have distinct diffuse compo-
nents  and .

The receptor excitations from the first object will be
weighted mixtures of a diffuse color signal,

(32)

and a specular color signal

(33)

where the weights are determined by the surface
mixture parameters and and the viewing
geometry. The receptor excitations for the second
object will also be weighted mixture of a diffuse color
signal,

(34)

and the same specular color signal

(35) .

Then the photoreceptor excitation for the first
object at location  is a weighted mixture,

(36) ,

where and Spec = [Spec1,
Spec2, Spec3]. Spec is the color of the illuminant (as
defined in the RGB Heuristic). As shown in Fig. 19.7,

all the photoreceptor excitations must lie in a plane
through the origin spanned by  and .

By a similar argument, all the photoreceptor excita-
tions for the second object, must lie in the plane
through the origin spanned by and :

(37) .

If there are enough different points from each of the
objects to permit detection and estimation of the two
planes, and if the planes are distinct, the intersection of
the planes determines up to an unknown scal-
ing. From this we can learn up to an overall scaling.

One strength of the method is that it does not
assume that bright, specular highlights visible on the
surface reflect precisely the spectral power distribution
of the illuminant. Instead, the light from each point on
the surface is modeled as a weighted mixture of a spec-
ular component and a diffuse component. The specular
component has the spectral power distribution of the
illuminant. The spectral power distribution of the dif-
fuse component is characteristic of the object and is
assumed to be independent of viewing angle.

Klinker, Shafer and Kanade (1988) analyze the dif-
fuse-specular superposition constraint further and
demonstrate that the diffuse-specular mixtures are not
simply confined to a plane in Fig. 19.6 but will typi-
cally form a characteristic skewed ‘T’ shape within the
plane. The skewed ‘T’ is a color space ‘feature’ that
can be extracted and used in estimating the illuminant.
Healey (1991) shows that it is possible to recover the
illuminant using one diffuse specular object if the
viewing geometry guarantees that some point on the
object will exhibit a pure diffuse reflectance, and
another point a pure specular reflectance with 100%
reflectance.

The Mutual Reflection Algorithm of Drew and
Funt. Drew and Funt (1990) describe how it is possi-
ble to estimate the illuminant parameters using the
mutual reflection between adjacent surfaces in Shape
World. Light emitted from one surface with spectral
component may reach a second nearby surface
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with spectral component and be absorbed and
re-emitted in the direction of the observer. The color
signal reaching the observer is proportional to

, where the constant of proportion-
ality is determined by the viewing geometry.

Drew and Funt (1990) restrict attention to the case
where each ray of light from the illuminant encounters
either one or two surfaces in its transit to the sensor
array (a ‘single-bounce’ or ‘one-bounce’ model of
mutual reflection). They express the color signal as a
sum of ‘zero-bounce’ and ‘one-bounce’ components
for each surface, substitute Eqs 12 and 13 into their
expressions, and show that the resulting third-degree
equations in ε and σ1, σ2 can be solved by iterative
methods. The method is ‘reasonably robust (p. 399)’
and can be used even when the two mutually-illumi-
nating surfaces have the same spectral components,
e.g., at a corner in a room.

The Shadow Algorithm of D'Zmura. D'Zmura
(1992) points out that his multiple illuminant algo-
rithm can be applied across shadow boundaries. At a
shadow boundary that does not coincide with the
boundary between two different surfaces, the same

surface is illuminated by two different illuminants. If
the shadow boundary intersects three or more surfaces,
the multiple illuminant algorithm of D'Zmura (1992)
can be applied to recover estimates of three-dimen-
sional illuminants and surface parameters with only
three photoreceptor classes.

Other Work. We have, so far, not made use of an
evident constraint on S(λ), the surface spectral reflec-
tance function, that . Forsyth (1990)
develops an approach to color constancy that makes
use of such physical-realizability constraints. Rubner
and Schultern (1989) apply a regularization approach
similar in spirit to the Bayesian. Other work, not fur-
ther discussed here, includes that of Gershon and Jep-
son (1988; 1989).

Other Environments. The Shape World Environ-
ment is not a realistic model of natural scenes. One
glaring deficiency is the restriction to one punctate
illuminant or a small number of punctate illuminants
that illuminate the scene successively or illuminate
non-overlapping parts of the scene. Research is needed
to develop realistic models of light-surface interaction
in scenes in a true Real World.

 Model Failure and Approximate Con-
stancy

The Consequences of Model Failure. As noted
above, linear models of illuminant and surface reflec-
tance with three dimensions do not provide perfect fits
to empirical data sets. Accordingly, if any of the algo-
rithms described above for ‘Flat World’ or ‘Shape
World’ are to be applied in an environment composed
of illuminants and surfaces drawn from such empirical
collections, the consequences of discrepancies
between idealization and application must be consid-
ered.

We can model the effect of linear model failure
within the linear model framework as follows (Mal-
oney, 1984). We represent the true spectral power dis-
tribution of the illuminant as the sum of the linear
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model approximation to it and a residual illumination
term e(λ);

(38) .

A similar decomposition is adopted for the surface
reflectance at location xy:

(39) ,

where sxy(λ) is the residual surface spectral reflec-
tance.

The color signal Lxy(λ) at location xy is then,

(40)

Let

(41) ,

the color signal from location xy if the linear mod-
els had accurately captured the illuminant spectral
power distribution and the surface spectral reflectance.
The discrepancy between Lxy(λ) and is the
sum of three terms,

(42) ,

corresponding to (a) the model light Eε(λ) shining
on the residual surface sxy(λ), (b) the residual light
e(λ) shining on the model surface and (c) the
residual light e(λ) shining on the residual surface
sxy(λ). We can view the scene, then, as the superposi-
tion of two scenes: the model scene , whose
parameters we wish to estimate, and the error scene in
Eqn 42, whose presence perturbs our estimates. The
magnitude of the perturbation at location xy is

, where

The error term ∆ρxy depends, first of all, on the
bases Ei and Sj and, of course, we would like to choose
bases to minimize the impact of the error scene. Mari-
mont and Wandell (1992) describe how to do this for
any empirical collection of lights, surfaces, and pho-
toreceptor sensitivities. Brill (1978; 1979), Buchs-
baum (1980), Maloney (1984), and Wandell (1987)
describe perturbation analyses of some of the Flat
World algorithms. A few results can be found in Mal-
oney (1984, Chap. 4).

Linear Models Algorithms and Human
Vision

In this section, we consider the relation between the
work reviewed above and classical models of color
vision framed in terms of hypothesized color channels
and transformation of color information through suc-
cessive stages. Earlier forms of this discussion may be
found in Maloney (1984; 1992).

Adaptational State and Adaptational Control.
Let ρxy denote, as above, the excitations of the three
photoreceptor classes in a small retinal patch near xy.
It is well known that ρxy alone does not determine the
perceived color appearance of the patch at xy which
may be profoundly influenced by photoreceptor exci-
tations in other retinal areas, in one or both eyes. I
assume that there are mechanisms of color appearance
whose excitations, written in vector form µxy =
[ ], determine performance in tasks
measuring color appearance in a small patch at loca-
tion xy.

The number W of mechanisms of color appearance
is unknown but, for the normal trichromatic observer,
it is plausible that there are three independent mecha-
nisms, and possibly others. For simplicity, I assume
W=3 in the following. The relationship between µxy

and ρxy can be written as,

(43) ,
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where τΣ: is a transformation from one
three-dimensional vector space to a second, and where
Σ denotes the influence of the surround: the photore-
ceptor excitations of previous retinal stimulation, and
current retinal stimulation at locations other than xy.

The color transformations, denoted τΣ(.), represent
the net effect of all the transformations (at various
‘stages’) performed by the visual system on the initial
retinal information corresponding to location xy. The
precise form of τΣ(.) has received considerable atten-
tion. There is widespread agreement that initial infor-
mation in three color pathways passes through a ‘First-
Site’ (Fig. 19.8) where it it scaled multiplicatively
(Chichilnisky & Wandell, 1995), and shifted additively
(Burnham, Evans & Newhall, 1957; Jameson & Hur-
vich, 1964; Walraven, 1976; Shevell, 1978), followed
by an opponent recombination (Hurvich & Jameson,
1957; See Hurvich, 1981; Wandell, 1995; Kaiser &
Boynton, 1996), and by ‘Second Site’ multiplicative
attenuation (Hurvich & Jameson, 1957; Webster &
Mollon, 1995; Brown & MacLeod, 1997).

The transformation τΣ(.) is likely non-linear if
examined across a wide range of overall scene intensi-
ties, but, “[f]or modest signals under a constant adap-

tation state, single-cell responses and psychophysical
sensitivity are consistent with mechanisms that
respond to simple sums or differences of the cone con-
trasts” (Webster, 1996, p. 595). Under such circum-
stances, we can assume that the τΣ(.) are
approximately affine transformations of the form,

(44) ,

where D1 and D2 are 3x3 diagonal matrices corre-
sponding to the multiplicative attenuations at first and
second sites, respectively, O1 is an offset 3-vector, cor-
responding to a first site additive shift, and H is a 3x3
opponent transformation matrix.

Of interest to us here are the components of τΣ(.)
that may change in response to Σ: the multiplicative
attenuations at first and second site, and the additive
shifts. I refer to these variable components of models
of τΣ(.) as parameters. These parameters depend on
the surround Σ. If we regard the opponent transforma-
tion as fixed (non-parameterized), the parameters
above include the first-site offsets and attenuations,
O = [π1, π2, π3], and D1 = Diag[π4, π5, π6], and the
second site attenuations D2=Diag[π7, π8, π9]. The
state vector of nine parameters π=[π1, ..., π9] deter-
mines τΣ(.) which may be written τπ(Σ)(.) or τπ(.) to
emphasize that the influence of the surround/scene
reduces to selecting the settings of a handful of param-
eters, π. This formulation of the study of color appear-
ance is essentially that employed by Krantz (1968) in
modeling the effect of ‘context’ on color appearance.

Stiles (1961, p. 264) proposed that the study of
color vision be considered as the study of two pro-
cesses, local retinal adaptational state and the process
that selects the local state, the control of adaptation:
“we anticipate that a small number of variables --
adaptation variables -- will define the condition of a
particular visual area at a given time, instead of the
indefinitely many that would be required to specify the
conditioning stimuli. The adaptation concept -- if it
works -- divides the original problem into two: what
are the values of the adaptation variables correspond-
ing to different sets of conditioning stimuli, and how
does adaptation, so defined, modify the visual
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response to given test stimuli.”
The exact number and nature of the local retinal

adaptational state parameters π is not important to the
discussion below. Various authors have suggested
models with from 3 to 9 parameters. See the discussion
in Brainard, Brunt and Speigle (1997). What is impor-
tant is that π determines the affine transformation
τπ(Σ) and that the surround/scene Σ determines π:

(45) .

Again, the advantage of this approach ‘if it works’,
is that is reduces the study of color vision to two ques-
tions:

1. What are the possible local retinal adaptation
states?5 That is, What are the local retinal state param-
eters and what possible settings can they take on? Let
the set of all possible parameter settings πbe denoted
Π.

2. How are possible conditioning stimuli mapped to
a choice of retinal adaptational state? In our terminol-
ogy, the set Π of possible parameter settings corre-
sponds to the possible retinal adaptational states, and
the control of adaptation is the selection process π(Σ)
that sets the retinal state, selecting the color transfor-
mation as a function of the surround Σ.

As discussed above, we know something about the
structure of the τπ(Σ), the affine transformations of Eqn
44. Until recently, the second question has received
considerably less attention than the first. I will argue
below in Linear Models and Adaptational Control that
the linear model algorithms make their most original
and significant contributions as candidate theories of
adaptational control, addressing the second of the two
questions. In the intervening sections, I describe a
small number of earlier theories of adaptational con-
trol necessary to the argument. The following is nei-

ther a comprehensive nor a representative discussion
of models of adaptational control, omitting important
work from Judd (1940) to Hunt (1991).

Recent work of Zaidi, Spehar and DeBonet (1997;
1998) is not directly relevant to this review, but cer-
tainly deserves mention. Zaidi and colleagues model
the effect of illuminant changes at both first and sec-
ond sites in the color channels. They then derive sim-
ple transformations that are intended to cancel the
illumination-induced changes at the second site. They
propose mechanisms of adaptational control that are
sensitive to spatial variation in the scene viewed. The
resulting ‘low-level’ (their terminology) approach to
color constancy is an elegant alternative to the sort of
physics-based approach described here. It would be
particularly interesting to analyze the behavior of their
model in response to specularity, shadow, etc. See
Poirson and Maloney (1998) for additional discussion.
Poirson and Maloney (1998) and Webster (1996) pro-
poses contrasting models of chromatic adaptation and
adaptational control.

 von Kries Algorithms. Von Kries (1902/1970;
1905/1970) proposed that retinal adaptation states be
identified with scalings of photoreceptor excitations.
Translated into the notation above, this is equivalent to
restricting the τ(.) to be diagonal matrices,

(46)

where D=Diag[π1, π2, π3]. Von Kries’ discussion of
the Coefficient Law for simple center-surround config-
urations of stimuli includes the assumption that

=1/ where is the excitation of the kth class
of receptor in response to the large conditioning Sur-
round field. It is not made clear how the visual system
might choose the coefficients πk in more complex
scenes, lacking a center surround structure.

Helson (1934; 1938) proposed a model of color
adaptation in which the coefficient πk was the inverse
of the average of photoreceptor excitations within the
kth class across a region of the retina. This von Kries-
Helson model coincides with von Kries’ proposal for
the simple center surround configuration, and is one

5. The term `local retinal adaptational state’ will be used
to refer to the state of the pathways that carry chromatic
information corresponding to a small region of the visual
scene. I do not mean to imply that chromatic adaptation is
purely retinal but rather to emphasize that the local retinal
color information is transformed at successive stages of the
visual system in ways that are not fixed.

Σ π Σ( ) τπ Σ( )→ →

µxy Dρxy
=

πk
xy ρk

Σ ρk
Σ
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possible extension of von Kries adaptation to arbitrary
scenes. The von Kries-Helson model of adaptation is
closely related to ‘Gray World’ (Buchsbaum, 1980, pp.
24) and Buchsbaum’s algorithm is intended as a natu-
ral generalization of von Kries-Helson that takes into
account the linear models constraints on light and sur-
face, making explicit the dependence of the algo-
rithm’s performance on environmental constraints.

The retinex algorithm of Land and McCann (1971)
assumes Eqn 46 and propose a complicated computa-
tion of the parameters (π1, π2, π3). In particular, the
value of the parameter πk depends only on the photore-
ceptor excitations of the kth class of photoreceptors,
k = 1,2,3. For the purposes of adaptational control,
then, the visual system is divided into three, isolated
retinexes, pathways driven by photoreceptor excita-
tions from a single class of photoreceptor but from
widely separated areas in the retina.

Brainard and Wandell (1986) analyze this retinex
algorithm and conclude that the computation, in effect,
selects, as πk, the inverse of the largest photoreceptor
excitation in the kth class of photoreceptors across a
region of the retina. A heuristic motivation for this
choice of π is that, if there is a perfectly reflecting
white surface visible in the scene, the retinex (Land &
McCann, 1971) algorithm will ‘lock on’ to it and, in
effect, scale by coefficients inversely proportional to
the color of the illuminant (See The RGB Heuristic).

Brainard and Wandell (1986) analyze the later ret-
inex algorithms of Land (1983; 1986) and conclude
that they, in effect, tend to choose the inverse of the
spatially-weighted geometric mean of the photorecep-
tors in the kth class of photoreceptors as the πk. In con-
trast, the von Kries-Helson algorithm described above
used the inverse of the spatially-weighted arithmetic
mean.

These algorithms are all examples of so-called
‘Lightness Algorithms’ (see Hurlbert, 1986; 1998;
Maloney, 1992 for reviews). The term ‘lightness algo-
rithm’ is unfortunate, for there is no special link
between such algorithms and the study of lightness
(Gilchrist, 1994). I refer to them as von Kries Algo-
rithms.

Brill and West (1981; West & Brill, 1982) study

necessary and sufficient conditions under which von
Kries adaptation can result in color constancy in
response to changes in the illuminant.

How well does von Kries describe human vision? It
is believed by many that von Kries adaptation, possi-
bly with an additive bias, is an accurate model for
human observers, at least in simple scenes. See Brain-
ard (1998) for a discussion and Chichilnisky and Wan-
dell (1995) for representative results. Foster and his
colleagues (Craven and Foster, 1992; Foster & Nasci-
mento, 1994) found that simulated von Kries transfor-
mations on images were judged illuminant changes
more often than simulated illuminant changes. Note,
however, that these results imply that a von Kries
transform accounts for much of visual adaptation, not
all. The analyses typically performed do not look for
small systematic patterns of deviation consistent with
a contribution from second site adaptation.

Recent experimental work is consistent with von
Kries adaptation but reject von Kries-Helson adapta-
tion in even modestly complex scenes (Jenness &
Shevell, 1995; Mausfeld, 1998; Brainard, 1998;
Brown & MacLeod, 1997). For example, Brainard
(1998; discussed in Kaiser & Boynton, 1996, p. 519)
draped part of a room in red vinyl cloth. This change
in average chromaticity of a large part of the scene
should have resulted, according to von Kries-Helson,
in a substantial change in the von Kries adaptational
coefficients and a marked change in the color appear-
ances of objects in the scene. It did not. In more recent
experiments, reported at the Optical Society Meetings,
Kraft and Brainard (1997) described experiments in
which the mean chromaticity of the color signals
across the scene was held fixed while the illuminant
was varied. The observer looked into a three foot cubi-
cal chamber. He viewed one of two scenes, one created
with a neutral illuminant on a variety of mostly gray
surfaces and one created with a red illuminant on a
variety of mostly blue surfaces. The mean color signal
across the observer’s field of view was the same. Even
with this mean held fixed, the visual system still
adjusted substantially to the illuminant. Their results
suggest that, under these experimental circumstances,
the mean color signal is influential but not decisive
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(D.H. Brainard, personal communication).

von Kries-Ives Adaptation. Clearly, von Kries
adaptation is not co-extensive with von Kries-Helson
adaptation. The retinex algorithms assume the same
local retinal adaptation states (von Kries) but propose
different rules for controlling the choice of adapta-
tional state.

We can distinguish one particular class of von Kries
algorithm in which the coefficients πk are set equal to
the chromaticity of the illuminant defined above in The
RGB Heuristic. I will refer to this form of adaptation
as von Kries-Ives adaptation. Again, without con-
straints on illuminants and surfaces in the scene, such
an algorithm will not, in general, ‘discount the illumi-
nant’ or result in approximate color constancy.6

A crucial difference between von Kries-Ives adap-
tation and the other von Kries algorithms, described
above, is that it is not obvious how to compute the
chromaticity of the illuminant from retinal excitations.
We can, however, view this limitation in another way.
Given any source of information about the chromatic-
ity of the illumination, we can implement a von Kries-
Ives algorithm based on it. Knowledge of the illumina-
tion parameters ε is enough to determine the chroma-
ticity of the illuminant. Hence any of the linear model
algorithms that estimate ε can be used to implement a
von Kries-Ives algorithm. We next consider the rela-
tion between linear models algorithms and adapta-
tional control in biological vision.

Linear Models and Adaptational Control.
Taken as models of chromatic adaptation the linear
models algorithms highlight the control mechanisms
of adaptation, the second of Stiles’ processes. Each of
the linear models algorithms described above can be
taken as a theory of the sources of information in a

scene that affect local adaptational state (Maloney &
Varner, 1986).

Many but not all of the linear models algorithms
derive an estimate of the illuminant vector ε, and
then compute estimates of the intrinsic surface colors,
σxy by applying the inverse matrix to the photoreceptor
receptor excitations,

(47) .

Any one-to-one transformation of the would
equally-well serve to determine color appearance, at
least in the absence of further assumptions concerning
the behavior of the mechanisms. If we let,
F: denote any one-to-one function, we can
hypothesize a link between the linear models algo-
rithms and Eqn 45 by writing,

(48) .

Again, comparing the two equations, we see that
the linear model algorithms reduce the information
present in the surround (the remainder of the scene) to
the handful of numbers . That is, the control pro-
cesses implicit in each of the algorithms above may
use information based on specularity cues, mutual illu-
mination cues, shading cues, and so forth, but their
contribution to the equation above is reduced to their
effect on the handful of parameters .

The algorithms described above puts the possible
local retinal adaptational states into one-to-one corre-
spondence with the matrices , the matrices that
compensate for each of the possible illuminants ε.
Recall that these matrices form a three-parameter fam-
ily,

(49)

where the Λi are fixed, determined by the linear
models. Within the linear models framework, this fam-
ily of matrices, parameterized by ε corresponds to the
family of transformations τπ(.) parameterized by π. It
is interesting to ask, how close the two matrix families
are to one another for realistic models of illuminant

6. It is sometimes claimed that von Kries algorithms do not
require strong assumptions about possible illuminants and
surface reflectances such as are presupposed by ‘linear
model algorithms’. On the contrary, they do. The relation
between performance and environment is often left unstated,
disguised as some form of the RGB Heuristic and Eqn 5.
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σ̂xy Λε̂
1– ρxy=
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and surface and various channel-stage models of early
vision including the von Kries model and the full affine
model of Eqn 44. This is an open question.

If the two sets of linear transformations are not
identical, then we could propose a constrained form of
any of the linear model algorithms where the illumi-
nant estimate is computed as prescribed by the algo-
rithm, but the matrix τπ(.) chosen is not the correct
matrix but the best approximation to it among the
possible choices of τπ(.). Linear model algorithms
constrained to use the transformations available in
human vision are, in effect, models of adaptation con-
trol based on a particular cue to the illuminant.

Privileged Environments. Many of the algorithms
described above, if used across a range where their
environmental assumptions are satisfied, would pro-
vide accurate estimates of surface properties. This
range, described by low-dimensional linear models,
may include illuminants that markedly differ in color
and surfaces spectral reflectances that also span a wide
chromatic gamut, and still permit perfect color con-
stancy. Large changes in the physical light can be con-
sistent with essentially perfect color constancy.

Yet, once lights or surfaces are drawn from outside
the linear models to which the algorithm is attuned, the
estimates of surface properties will fail to be constant
for almost all changes in the light. . Consequently, if
one were to select lights and surfaces haphazardly, one
would almost certainly conclude that a visual system
which, in fact, embodied one of the algorithms above
was at best approximately color constant, failing less
on some occasions than on others. It would be easy to
overlook the class of illuminants and surfaces where
the algorithms operate flawlessly. The existence of
such Privileged Environments of lights and surfaces is
perhaps the most significant prediction for the study of
human color vision.

The preceding discussion leads to the following
considerations. What, precisely, are the linear models
for surface reflectances and for illuminants that lead to
optimal human performance in surface color percep-
tion experiments? This question remains open.
Researchers typically pick plausible simulated illumi-

nants and surface reflectances drawn from Judd, Mac-
Adam and Wyszecki (1964)’s linear model of daylight
and a linear model derived from Munsell sample mea-
surements (e.g. Brainard & Wandell, 1991). The
resulting measures of performance likely understate
optimal human performance as noted in the section on
methodology.

Light Estimation as Cue Combination

Consideration of the algorithms above suggests that
there are several possible cues to the illuminant. It is
natural to consider the estimation of the illuminant as
a cue combination problem, analogous to cue combi-
nation in depth/shape vision. Kaiser and Boynton
(1996, p. 521) have previously suggested that illumi-
nant estimation is best thought of as combination of
information from multiple cues.

Consider the following simple model of illuminant
estimation: each of several cues (specularity, etc) is
used to estimate the illuminant parameters ε. One cue
could correspond to the Stable Mean Assumption (also
known as ‘Gray World’), deriving an estimate of the
illuminant parameters ε from a weighted average of
the photoreceptor excitations across the scene. This
estimate is denoted . One or more cues might be
based on specular information, leading to the estimate,

. The weighted average of estimates based on
these cues is taken to be a single illuminant estimate
that controls the color transformation as discussed in
the previous section.

(50)

The weights α. are non-negative and sum to 1, and
each value α. reflect the relative importance assigned
to the corresponding cue.

Landy et al. (1995) report empirical tests which
imply that depth cue weights change. The implication
for surface color perception is that the relative weight
assigned to different estimates of the illuminant from
different cue types may also change. In particular, con-
sider the sort of experiment where almost all cues to
the illuminant are missing: the observer views a large,
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uniform surround with a small number of test regions
superimposed. It is plausible that the only cue to the
illuminant remaining is the Stable Mean cue, the chro-
maticity of the surround. Then the visual system might
set αSM to essentially 1, effectively basing its light esti-
mate on this single cue. The result would be the sort of
‘von Kries-Helson’ behavior observed experimentally.
In more complex scenes, the weight assigned to the
Stable Mean cue might be reduced as other cues
become available. This would explain the puzzling
observation discussed previously above, that the von
Kries-Helson pattern of response found in many labo-
ratories does not generalize to the outside world (or
even David Brainard’s laboratory).

A second, and surprising analogy between depth
cue combination and illuminant estimation, is that not
all cues to the illuminant provide full information
about the illuminant parameters ε. Some of the meth-
ods (such as the Subspace Algorithm) lead to estimates
of ε that include an unknown multiplicative scale fac-
tor. It would be meaningless to average such an esti-
mate of ‘relative’ ε together with a full estimate of ε.

An analogous problem arises in depth cue combina-
tion since certain depth cues (such as relative size) pro-
vide depth information up to an unknown
multiplicative scale factor. The problem of combining
depth estimates some of which are in meters, others in
only relative units, is termed cue promotion by Mal-
oney and Landy (1989) and is treated further in Landy
et al. (1995).

In summary, I advance the proposal that a central
step in the control of adaptation is computation of illu-
minant estimates based on illuminant cues. In scenes
rich in accurate illuminant cues, the estimate will be
not too far from correct, and approximate color con-
stancy results. In simple center-surround scenes, the
single cue would seem to be the large surround, the
Stable Mean cue, resulting in approximate von Kries-
Helson behavior. What the cues to the illuminant
employed in human vision are, and how they are com-
bined, remain open questions. Many of the algorithms
above can be identified with potential cues to the illu-
minant, but it is likely that some of them will prove to
be irrelevant to human vision. It is also plausible that

better models of illuminant and surface interactions in
complex scenes will lead to discovery of other candi-
date cues to the illuminant.

Summary

Physics-based models of surface color perception
has implications for the study of color vision as a
whole.These include, first of all, the importance of
studying adaptational control as well as the structure
of single color channels. A second implication is that
we need to know more about how light and surface
interact in scenes if we are to understand how color
vision proceeds in complex, natural environments.

In addition, the investigation of explicit models of
light and surface in scenes has rled us to a number of
candidate cues to the illumination in scenes and has
permitted the development of precise models of how
this information may be recovered. It remains to be
seen whether any of these cues to the illuminant is used
by biological vision systems.

Last, once the possibility that there are many possi-
ble cues to the illuminant is considered, it is natural to
ask how a visual system, ideal or biological might pick
and choose among them, and this leads to consider-
ation of the similarities between surface color percep-
tion and depth/shape perception.

Not addressed in this review is the issue of the rela-
tionship between shape perception and surface color
perception. If the spatial layout of the scene is known,
including the precise shapes and positions of objects,
it is entirely plausible that more accurate estimates of
the illuminant parameters can be computed. Also not
addressed is the issue of complex illuminant environ-
ments with multiple, non-punctate sources of light.

Acknowledgments

This work was supported by a grant from the
National Eye Institute EY08266 and a fellowship from
the Deutscher Akademischer Austauschdienst. The
data from Vrhel, Gershon and Iwan (1994) were pro-
vided by Ron Gershon. I thank Ron Gershon, his co-
authors, and the Kodak company for making them



416 Physics-Based Approaches to Modeling Surface Color Perception

available. Several people were kind enough to read and
comment on earlier drafts: David Brainard, Michael
D'Zmura, Karl Gegenfurtner, Susan Hodge, Michael
Landy, and Joong Nam Yang. I am very grateful to
them all. Special thanks to Rainer Mausfeld for shar-
ing the quote from Ulrich von Strassburg, and to
Michael Brill for pointing out the enduring importance
of Ives (1912b).

References

 Apostol, T.M. (1969) Calculus, 2nd Edition, Volume
II. Xerox, Waltham, Massachusetts.

Arend, L.E. Jr. (1993) how much does illuminant color
affect unattributed colors? Journal of the Optical
Society of America A, 10, 2134-2147.

Arend, L.E. & Reeves, A. (1986) Simultaneous color
constancy. Journal of the Optical Society of Amer-
ica A, 3, 1743-1751.

Arend, L.E., Reeves, A., Schirillo, J. & Goldstein, R.
(1991) Simultaneous color constancy: Papers with
diverse Munsell values. Journal of the Optical Soci-
ety of America A, 8, 661-672

Bäuml, K.H. (1994) Color appearance: effects of illu-
minant changes under different surface collections.
Journal of the Optical Society of America A, 12,
531-542.

Bäuml, K.H. (1995) Illuminant changes under differ-
ent surface collections: Examining some principles
of color appearance. Journal of the Optical Society
of America A, 12, 261-271.

Beck, J. (1972) Surface Color Perception. Cornell
University Press, Ithaca, New York.

Berns, R.S. & Gorzynski, M.E. (1991) Simulating sur-
face colors on CRT displays: the importance of cog-
nitive clues. AIC Conference: Colour and Light,
21-24.

Blackwell, D. & Girshick, M.A. (1954) Theory of
Games and Statistical Decisions. Wiley, New York.

Brainard, D.H. (1998) Color constancy in the nearly
natural image. 2. achromatic loci. Journal of the
Optical Society of America A, 15, 307-325.

Brainard, D.H., Brunt, W.A. & Speigle, J.M. (1997)
Color constancy in the nearly natural image. 1.

Asymmetric matches. Journal of the Optical Soci-
ety of America A, 14, 2091-2110.

Brainard, D.H. & Freeman, W.T. (1997) Bayesian
color constancy. Journal of the Optical Society A,
14, 1393-1411.

Brainard, D.H., Rutherford, M.D. & Kraft, J.M. (1997)
Color constancy compared: Experiments with real
images and color monitors. Investigative Ophthal-
mology & Visual Science (Suppl.), 38, 476.

Brainard, D.H. & Wandell, B.A. (1986) An analysis of
the retinex theory of color vision. Journal of the
Optical Society of America A, 3, 1651-1661.

Brainard, D.H. & Wandell, B.A. (1991) A bilinear
model of the illuminant’s effect on color appear-
ance. In Computational Models of Visual Process-
ing (eds. Movshon, J.A. & Landy, M.S.) MIT Press,
Cambridge, MA.

Brainard, D.H. & Wandell, B.A. (1992) Asymmetric
color-matching: How color appearance depends on
the illuminant. Journal of the Optical Society of
America A, 9, 1433-1448.

Brill, M.H. (1978) A device performing illuminant-
invariant assessment of chromatic relations. Jour-
nal of Theoretical Biology, 71, 473.

Brill, M.H. (1979) Further features of the illuminant-
invariant trichromatic photosensor. Journal of The-
oretical Biology, 78, 305.

Brill, M.H. & West, G. (1981) Contributions to the the-
ory of invariance of color under the condition of
varying illumination. Journal of Mathematical
Biology, 11, 337-350

Brown, R. & MacLeod, D.I.A. (1997) Color appear-
ance depends on the variance of surround colors.
Current Biology, 7, 844-849.

Buchsbaum, G. (1980) A spatial processor model for
object colour perception. Journal of the Franklin
Institute, 310, 1-26.

Buchsbaum, G. & Gottschalk, A. (1984) Chromaticity
coordinates of frequency-limited functions. Jour-
nal of the Optical Society of America, 1, 885-887.

Burnham, R.W., Evans, R.M. & Newhall, S.M. (1957)
Prediction of color appearance with different adap-
tation illuminations. Journal of the Optical Society
of America, 47, 35-42.



Laurence T. Maloney 417

Byrne, A. & Hilbert, D.R. (1997a) Readings on Color;
Volume 1: The Philosophy of Color. MIT Press,
Cambridge, MA.

Byrne, A. & Hilbert, D.R. (1997b) Readings on Color;
Volume 2: The Science of Color. MIT Press, Cam-
bridge, MA.

Chichilnisky, E.J. & Wandell, B.A. (1995) Photore-
ceptor sensitivity changes explain color appearance
shifts induced by large uniform backgrounds in
dichoptic matching. Vision Research, 35, 239-254.

Cohen, J. (1964) Dependency of the spectral reflec-
tance curves of the Munsell color chips. Psy-
chonomic Science, l, 369.

Craven, B.J. & Foster, D.H. (1992) An operational
approach to color constancy. Vision Research, 32,
1359-1366.

Dannemiller, J.L. (1992) Spectral reflectance of natu-
ral objects: how many basis functions are neces-
sary? Journal of the Optical Society of America A,
9, 507-515.

Das, S.R. & Sastri, V.D.P. (1965) Spectral distribution
and color of tropical daylight. Journal of the Opti-
cal Society of America, 55, 319.

Dixon, E.R. (1978) Spectral distribution of Autralian
daylight. Journal of the Optical Society of America,
68, 437-450.

Drew, M.S. & Funt, B.V. (1990) Calculating surface
reflectance using a single-bounce model of mutual
reflection. Proceedings of the Third International
Conference on Computer Vision, Osaka, Japan,
December 4-7, 1990. IEEE Computer Society,
Washington.

D'Zmura, M. (1992) Color constancy: Surface color
from changing illumination. Journal of the Optical
Society of America A, 9, 490-493.

D'Zmura, M. & Iverson, G. (1993a) Color constancy:
I. Basic theory of two-stage linear recovery of spec-
tral descriptions for lights and surfaces. Journal of
the Optical Society of America A, 10, 2148-2165.

D'Zmura, M. & Iverson, G. (1993b) Color Constancy:
II. Results for two-stage linear recovery of spectral
descriptions for lights and surfaces. Journal of the
Optical Society of America A, 10, 2166-2180.

D'Zmura, M. & Iverson, G. (1994) Color Constancy:
III. General linear recovery of spectral descriptions
for lights and surfaces. Journal of the Optical Soci-
ety of America A, 11, 2389-2400.

D'Zmura, M., Iverson, G. & Singer, B. (1995) Proba-
bilistic color constancy. In Geometric Representa-
tions of Perceptual Phenomena; Papers in Honor of
Tarow Indow on His 70th Birthday (eds. Luce,
R.D., D'Zmura, M., Hoffman, D., Iverson, G.J. &
Romney, A.K.) pp. 187-202. Lawrence Erlbaum
Associates, Mahwah, New Jersey.

D'Zmura, M. & Lennie, P. (1986) Mechanisms of color
constancy. Journal of the Optical Society of Amer-
ica A, 3, 1662-1672.

Evans, R.M. (1948) An Introduction to Color. Wiley,
New York.

Fairchild, M.D. & Lennie, P. (1992) Chromatic adap-
tation to natural and incandescent illuminants.
Vision Research, 32, 2077-2085.

Ferguson, T.S. (1967) Mathematical Statistics; A
Decision Theoretic Approach. Academic Press,
New York.

Forsyth, D. (1990) A novel algorithm for color con-
stancy. International Journal of Computer Vision,
5, 5-36.

Foster, D.H. & Nascimento, S.M.C. (1994) Relational
colour constancy from invariant cone-excitation
ratios. Proceedings of the Royal Society of London
B, 257, 115-121.

Foster, D.H., Nascimento, S.M.C., Craven, B.J., Lin-
nell, K.J., Cornelissen, F.W. & Brenner, E. (1997)
Four issues concerning colour constancy and rela-
tional colour constancy. Vision Research, 37, 1341-
1345.

Freeman, W.T. & Brainard, D.H. (1995) Bayesian
decision theory, the maximum local mass estimate,
and color constancy. Proceedings of the 5th Inter-
national Conference on Computer Vision, Cam-
bridge University Press, MA, 210-217.

Funt, B.V. & Ho, J. (1989) Color from black and white.
International Journal of Computer Vision, 3, 109-
117.

Gershon, R. & Jepson, A.D. (1988) Discounting illu-
minants beyond the sensor level. Proceedings of the



418 Physics-Based Approaches to Modeling Surface Color Perception

SPIE Conference on Intelligent Robots and Com-
puter Vision VII, 1002, 250-257.

Gershon, R. & Jepson, A.D. (1989) The computation
of color constant descriptors in chromatic images.
Color Research and Application, 14, 325-334.

Gilchrist, A.L. (1977) Perceived lightness depends on
perceived spatial arrangement. Science, 195, 185.

Gilchrist, A.L. (1980) When does perceived lightness
depend on perceived spatial arrangement? Percep-
tion & Psychophysics, 28, 527-538.

Gilchrist, A.L. (1994) Lightness, Brightness & Trans-
parency. Lawrence Erlbaum Associates, Hillsdale,
New Jersey.

Gilchrist, A.L., Delman, S. & Jacobsen, A. (1983) The
classification and integration of edges as critical to
the perception of reflectance and illumination. Per-
ception & Psychophysics, 33, 425-436.

Healey, G. (1991) Estimating spectral reflectances
using highlights. Image and Vision Computing, 9,
333-337.

Healey, G., Shafer, S. & Wolfe, L. (1992) Physics-
Based Vision: Principles and Practice. Jones &
Bartlett, London.

von Helmholtz, H. (1896/1962) Helmholtz’s Treatise
on Physiological Optics (ed. Southall, J.P.C.).
Dover, New York.

Helson, H. (1934) Some factors and implications of
color constancy. Journal of the Optical Society of
America, 33, 555-567.

Helson, H. (1938) Fundamental problems in color
vision. I. The principle governing changes in hue
saturation and lightness of non-selective samples in
chromatic illumination. Journal of Experimental
Psychology, 23, 439.

Helson, H. & Judd, D.B. (1936) An experimental and
theoretical study of changes in surface colors under
changing illuminations. Psychological Bulletin, 33,
740-741.

Helson, H. & Michels, W.C. (1948) The effect of chro-
matic adaptation on achromaticity. Journal of the
Optical Society of America, 38, 1025-1032.

Hilbert, D.R. (1987) Color and color perception; A
study in anthropocentric realism. CSLI Lecture

Notes Number 9. Center for the Study of Language
and Information, Stanford, CA.

Ho, J. (1988) Chromatic aberration: A new tool for
colour constancy. Master’s Thesis, School of Com-
puter Science, Simon Fraser University, Vancouver,
Canada.

Ho, J., Funt, B.V. & Drew, M.S. (1990) Separating a
color signal into illumination and surface reflec-
tance components: Theory and applications. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 12, 966-977.

Horn, B.K.P. & Brooks, M.J. (1989) Shape from Shad-
ing. The MIT Press, Cambridge, MA.

Horn, B.K.P. & Sjoberg, R.W. (1989) Calculating the
reflectance map. In Shape from Shading (eds. Horn,
B.K.P. & Brooks, M.J.) pp. 215-244. The MIT
Press, Cambridge, MA.

Hunt, R.W.G. (1991) Revised colour-appearance
model for related and unrelated colours. Colour
Research an Applications, 16, 146-165.

Hurlbert, A. (1986) Formal connections between light-
ness algorithms. Journal of the Optical Society of
America A, 3, 1684-1693.

Hurlbert, A. (1998) Computational models of color
constancy. In Perceptual constancies (eds. Walsh,
V. & Kulikowski, J.) Cambridge University Press,
Cambridge (in Press).

Hurvich, L.M. (1981) Color Vision. Sinauer, Sunder-
land, Massachusetts.

Hurvich, L.M. & Jameson, D. (1957) An opponent
process theory of color vision. Psychological
Review, 64, 384-404.

Ingle, D. (1985) The goldfish as a retinex animal. Sci-
ence, 227, 651-654.

Iverson, G. & D'Zmura, M. (1995a) Criteria for color
constancy in trichromatic bilinear models. Journal
of the Optical Society of America A, 11, 1970-1975.

Iverson, G. & D'Zmura, M. (1995b) Color Constancy:
Spectral Recovery Using Trichromatic Bilinear
Models. In Geometric Representations of Percep-
tual Phenomena, Papers in Honor of Tarow Indow
on His 70th Birthday (eds. Luce, R.D., D'Zmura,
M., Hoffman, D., Iverson, G.J. & Romney, A.K.)



Laurence T. Maloney 419

pp. 169-185. Lawrence Erlbaum Associates, Mah-
wah, New Jersey.

Ives, H.E. (1912b) the relation between the color of the
illuminant and the color of the illuminated object.
Transactions of the Illuminating Engineering Soci-
ety, 62-72.

Jacobs, G.H. (1981) Comparative Color Vision. Aca-
demic Press, New York.

Jacobs, G.H. (1990) Evolution of mechanisms for
color vision. Proceedings of the SPIE, 1250, 287-
292.

Jacobs, G.H. (1993) The distribution and nature of
colour vision among the mammals. Biological
Review, 68, 413-471.

Jameson, D. & Hurvich, L.M. (1964) Theory of bright-
ness and color contrast in human vision. Vision
Research, 4, 135-164.

Jameson, D. & Hurvich, L.M. (1989) Essay concern-
ing color constancy. Annual Review of Psychology,
40, 1-22.

Jenness, J.W. & Shevell, S.K. (1995) Color appearance
with sparse chromatic context. Vision Research, 35,
797-805.

Judd, D.B. (1940) Hue saturation and lightness of sur-
face colors with chromatic illumination. Journal of
the Optical Society of America, 30, 2.

Judd, D.B., MacAdam, D.L. & Wyszecki, G.W. (1964)
Spectral distribution of typical daylight as a func-
tion of correlated color temperature. Journal of the
Optical Society of America, 54, 1031.

Kaiser, P.K. & Boynton, R.M. (1996) Human Color
Vision, 2nd Edition. Optical Society of America,
Washington, D.C..

Klinker, G.J., Shafer, S.A. & Kanade, T. (1988) The
measurement of highlight in color images. Interna-
tional Journal of Computer Vision, 2, 7-32.

Kraft, J.M. & Brainard, D.H. (1997) An analysis of
cues contributing to color constancy. Program of
the Optical Society of Americal Annual Meeting,
Long Beach, CA, October 12-17, 1997, p. 110.

Krantz, D. (1968) A theory of context effects based on
cross-context matching. Journal of Mathematical
Psychology, 5, 1-48.

von Kries, J. (1902/1970) Chromatic adaptation.
Selection translated and reprinted in Sources of
Color Science (ed. MacAdam, D.L.) pp. 109-119.
The MIT Press, Cambridge, MA.

von Kries, J. (1905/1970) Influence of adaptation on
the effects produced by luminous stimuli, Selection
translated and reprinted in Sources of Color Science
(ed. MacAdam, D.L.) pp. 120-126. The MIT Press,
Cambridge, MA.

Krinov, E.L. (1947/1953) Spectral’naye otrazha-
tel’naya sposobnost’prirodnykh obrazovanii. Izd.
Akad. Nauk USSR (Proc. Acad. Sci. USSR); trans-
lated by G. Belkov, Spectral reflectance properties
of natural formations; Technical translation: TT-
439. Ottawa, Canada: National Research Council of
Canada, 1953.

Land, E.H. (1959/1961) Experiments in color vision.
Scientific American, 201, 84-99, reprinted in Color
Vision; An Enduring Problem in Psychology (eds.
Teevan, R.C. & Birney, R.C.). Van Nostrand, Tor-
onte.

Land, E.H. (1983) Recent advances in retinex theory
and some implications for cortical computations:
color vision and the natural image. Proceedings of
the National Academy of Sciences, 80, 5163-5169.

Land, E.H. (1986) Recent advances in retinex theory.
Vision Research, 26, 7-22.

Land, E.H. & McCann, J.J. (1971) Lightness and ret-
inex theory. Journal of the Optical Society of Amer-
ica, 61, 1-11.

Landy, M.S., Maloney, L.T., Johnston, E.B. & Young,
M. (1995) Measurement and modeling of depth cue
combination: In defense of weak fusion. Vision
Research, 35, 389-412.

Lee, H.-C. (1986) Method for computing the scene-
illuminant chromaticity from specular highlights.
Journal of the Optical Society of America A, 3,
1694-1699.

Lee, H.-C., Breneman, E.J. & Schulte, C.P. (1990)
Modeling light reflection for computer color vision.
IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12, 402-409.

Lythgoe, J.N. (1979) The Ecology of Vision. Claren-
don, Oxford.



420 Physics-Based Approaches to Modeling Surface Color Perception

MacAdam, D.L. (1981) Color Measurement. Theme
and Variations. Springer-Verlag, Berlin.

Maddox, I.J. (1970) Elements of Functional Analysis.
Cambridge University Press, Cambridge.

Maloney, L.T. (1984) Computational approaches to
color constancy. Dissertation: Stanford University.
Reprinted as (1985) Stanford Applied Psychology
Laboratory Report 1985-01.

Maloney, L.T. (1986) Evaluation of linear models of
surface spectral reflectance with small numbers of
parameters. Journal of the Optical Society of Amer-
ica A, 3, 1673-1683.

Maloney, L.T. (1992) Color constancy and color per-
ception: The linear-models framework. In Attention
and Performance XIV: Synergies in Experimental
Psychology, Artificial Intelligence, and Cognitive
Neuroscience - a Silver Jubilee (eds. Meyey, D.E. &
Kornblum, S.) pp. 59-78. MIT Press, Cambridge,
MA.

Maloney, L.T. (1998) Surface spectral reflectance:
Models and evaluation. In Colour Vision: From
Light to Object (eds. Mausfeld, R. & Heyer, D.) (in
Preparation).

Maloney, L.T. & Landy, M.S. (1989) A statistical
framework for robust fusion of depth information.
In Visual Communications and Image Processing,
IV Proceedings of the SPIE (ed. Pearlman, W.A.) p.
1199, 1154-1163.

Maloney, L.T. & Varner, D.C. (1986) Chromatic adap-
tation, the control of chromatic adaptation, and
color constancy (abstract). Optics News, 12, 134.

Maloney, L.T. & Wandell, B.A. (1986) Color con-
stancy: A method for recovering surface spectral
reflectance. Journal of the Optical Society of Amer-
ica A, 3, 29.

Mardia, K.V., Kent, J.T. & Bibby, J.M. (1979) Multi-
variate Analysis. Academic Press, London.

Marimont, D. & Wandell, B.A. (1992) Linear models
of surface and illuminant spectra. Journal of the
Optical Society of America A, 9, 1905-1913.

Mausfeld, R. (1997) Colour perception: From Grass-
man codes to a dual code for object and illuminant
colours. In Color Vision (eds. Backhaus, W., Kliegl,
R. & Werner, J.). De Gruyter, Berlin.

Mollon, J.D., Estévez, O. & Cavonius, C.R. (1990)
The two subsystems of colour vision and their roles
in wavelength discrimination. In Vision, Coding
and Efficiency (ed. Blakemore, C.). Cambridge
University Press, Cambridge.

Nayar, S.K. & Oren, M. (1995) Visual appearance of
matte surfaces. Science, 267, 1153-1156.

Nassau, K. (1983) The Physics and Chemistry of
Color: The Fifteen Causes of Color. Wiley, New
York.

Neumeyer, C. (1981) Chromatic adaptation in the
honey bee: Successive color contrast and color con-
stancy. Journal of Comparative Physiology, 144,
543-553.

Oren, M. & Nayar, S.K. (1995) Generalization of the
Lambertian model and implications for machine
vision. International Journal of Computer Vision,
14, 227-251.

Parkkinen, J.P.S., Hallikainen, J. & Jaaskelainen, T.
(1989) Characteristic spectra of Munsell colors.
Journal of the Optical Society of America A, 6, 318-
322.

Poirson, A.B. & Maloney, L.T. (1998) Surface color
appearance in simple and complex scenes. In
Colour Vision: From Light to Object (eds. Maus-
feld, R. & Heyer, D.) (in Preparation).

Romero, J., Garciá-Beltrán, A. & Hernández-Andrés,
J. (1997) Linear bases for representation of natural
and artificial illuminants. Journal of the Optical
Society of America A (in Press).

Rubner, J. & Schultern, K. (1989) A regularized
approach to color constancy. Biological Cybernet-
ics, 61, 29-36.

Sällström, P. (1973) Colour and physics: Some
remarks concerning the physical aspects of human
colour vision. University of Stockholm: Institute of
Physics Report, 73-09.

Sastri, V.D.P. & Das, S.R. (1966) Spectral distribution
and color of north sky at Delhi. Journal of the Opti-
cal Society of America, 56, 829.

Sastri, V.D.P. & Das, S.R. (1968) Typical spectra dis-
tributions and color for tropical daylight. Journal of
the Optical Society of America, 58, 391.



Laurence T. Maloney 421

Shafer, S.A. (1985) Using color to separate reflectance
components. Color Research and Applications, 10,
210-218.

Shepard, R.N. (1992) The perceptual organization of
colors: An adaptation to regularities of the terres-
trial world? In The adapted mind; Evolutionary
psychology and the generation of culture (eds.
Barkow, J.H., Cosmides, L. & Tooby, J.) pp. 495-
531. Oxford University Press, New York.

Shevell, S.K. (1978) The dual role of chromatic back-
grounds in color perception. Vision Research, 18,
1649-1661.

Speigle, J.M. (1998) Testing whether a common repre-
sentation mediates the effects of viewing context on
color appearance, Unpublished Ph.D. Thesis, Uni-
versity of California, Santa Barbara.

Speigle, J.M. & Brainard, D.H. (1996) Is color con-
stancy task independent? Proceedings of the 4th
IS&T/SID Color Imaging Conference, 167-172.

Stiles, W.S. (1961) Adaptation, chromatic adaptation,
colour transformation. Anales Real Soc. Espan. Fis.
Quim., Series A, 57, 149-175.

Stiles, W.S., Wyszecki, G. & Ohta, N. (1977) Counting
metameric object-color stimuli using frequency-
limited spectral reflectance functions. Journal of
the Optical Society of America, 67, 779.

Strang, G. (1988) Linear Algebra and its Applications.
Harcourt, Brace, Jovanovich, New York.

Thompson, E. (1995) Colour Vision; A Study in Cog-
nitive Science and the Philosophy of Perception.
Routledge, London.

Tominaga, S. & Wandell, B.A. (1989) The standard
surface reflectance model and illuminant estima-
tion. Journal of the Optical Society of America A, 6,
576-584.

Tominaga, S. & Wandell, B.A. (1990) Component
estimation of surface spectral reflectance. Journal
of the Optical Society of America A, 7, 312-317.

Troost, J.M. & de Weert, C.M. (1991) Naming versus
matching in color constancy. Perception & Psycho-
physics, 50, 591-602.

Tsukada, M. & Ohta, Y. (1990) An approach to color
constancy using multiple images. Proceedings of

the Third International Conference on Computer
Vision, Vol. 3. 385-393.

Ulrich von Strassburg (1262) De Pulchro, In Grab-
mann, M. (1926), Des Ulrich Engelberti O. Pr.
(1277) Abhandlung de Pulchro: Untersuchung und
Texte. München: Sitzungsberichte der Bayerischen
Akademie der Wissenschaften, Phil.-hist. Klasse,
Jg. 1925.

Vrhel, M.J., Gershon, R. & Iwan, L.S. (1994) Mea-
surement and analysis of object reflectance spectra.
Color Research and Applications, 19, 4-9.

Vrhel, M.J. & Trussel, H.J. (1992) Color correction
using principal components. Color Research and
Applications, 17, 328-338.

Walraven, J. (1976) Discounting the background: The
missing link in the explanation of chromatic induc-
tion. Vision Research, 16, 289-295.

Wandell, B.A. (1987) The synthesis and analysis of
color images. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, PAMI-9, 2-13.

Wandell, B.A. (1995) Foundations of Vision. Sinauer
& Associates, Sunderland, MA.

Webster, M.A. (1996) Human colour perception and
its adaptation: topical review. Network: Computa-
tion in Neural Systems, 7, 587-634.

Webster, M.A. & Mollon, J.D. (1995) Colour con-
stancy influenced by contrast adaptation. Nature,
373, 694-698.

Weisskopf, V.F. (1968) How light interacts with mat-
ter. Scientific American, 219, 59-71.

Werner, A. (1990) Farbkonstanz bei der Honigbiene,
Apis Mellifera. Doctoral dissertation, Fachbereich
Biologie, Freie Universität Berlin.

Werner, J.S. & Walraven, J. (1982) effect of chromatic
adaptation on the achromatic locus: The role of
contrast, luminance, and background color. Vision
Research, 22, 929-944.

West, G. & Brill, M.H. (1982) Necessary and sufficient
conditions for von Kries chromatic adaptation to
give color constancy. Journal of Mathematical
Biology, 15, 249-258.

Wyszecki, G. & Stiles, W.S. (1982) Color Science;
Concepts and Methods, Quantitative Data and For-
mulas. 2nd Edition. Wiley, New York.



422 Physics-Based Approaches to Modeling Surface Color Perception

Yilmaz, H. (1962) Color vision and a new approach to
color perception. In Biological Prototypes and Syn-
thetic Systems, Vol. 1. Plenum, New York.

Young, N. (1988) An Introduction to Hilbert Space.
Cambridge University Press, Cambridge.

Zaidi, Q., Spehar, B. & DeBonet, J. (1997) Color con-
stancy in variegated scenes: Role of low-level

mechanisms in discounting illumination changes.
Journal of the Optical Society of America A, 14,
2608-2621.

Zaidi, Q., Spehar, B. & DeBonet, J. (1998) Adaptation
to textured chromatic fields. Journal of the Optical
Society of America A, 15, 23-31.


