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ABSTRACT—We studied human movement planning in tasks

in which subjects selected one of two goals that differed in

expected gain. Each goal configuration consisted of a

target circle and a partially overlapping penalty circle.

Rapid hits into the target region led to a monetary bonus;

accidental hits into the penalty region incurred a penalty.

The outcomes assigned to target and penalty regions and

the spatial arrangement of those regions were varied.

Subjects preferred configurations with higher expected

gain whether selection involved a rapid pointing movement

or a choice by key press. Movements executed to select one

of two goal configurations exhibited the same movement

dynamics as pointing movements directed at a single con-

figuration, and were executed with the same high effi-

ciency. Our results suggest that humans choose near-

optimal strategies when planning their movement, and can

base their selection of strategy on a rapid judgment about

the expected gain associated with possible movement goals.

In the course of a day, people make many decisions. They oc-

casionally make the kinds of explicit economic decisions

studied in the decision-making literature, but more frequently

they decide how to move in response to the risks and rewards in

the environment. Survival can depend on making the latter kind

of decision rapidly and well. In this article, we discuss human

performance in executing visuo-motor tasks equivalent to de-

cision making under risk, and examine the criteria human de-

cision makers use in rapidly choosing between alternative

courses of action.

Previous studies demonstrated that when executing speeded

arm movements under risk, humans select movement strategies

that are nearly optimal (Trommershäuser, Maloney, & Landy,

2003a, 2003b). In these studies, subjects pointed rapidly at

stimulus configurations consisting of a small target and a par-

tially overlapping penalty region. Reaches terminating within

the target region yielded monetary reward; those ending in the

penalty region could result in a loss. The target’s size and the

distance between target and penalty regions were small (less

than 2 cm), similar in size to the subjects’ end-point variability.

Yet subjects performed these tasks with high efficiency. This is

surprising, as the underlying decision task is complex.

To see why, consider such an experiment when hits on the

target and penalty yield gains of 1100 and �500 points, re-

spectively (Fig. 1a).1 Under these conditions, a movement can

end in one of four regions: penalty only (Region R1, gain G1 5

�500), target-penalty overlap (Region R2, gain G2 5 �400),

target only (Region R3, gain G3 5 100), or neither target nor

penalty (i.e., background; Region R4, gain G4 5 0). In executing

this task, the subject chooses a strategy S. The outcome of

executing the strategy is an end point on the display (x, y), and

the reward or penalty depends only on the region in which the

end point falls. We identify a strategy S with the mean ð�x; �yÞ of

all the end points that would result if it were repeated many

times (Trommershäuser et al., 2003b). The choice of strategy

fixes the probability P(Ri|S) of hitting each of the four regions

Ri (i 5 1, . . . , 4). In the decision-making literature, the com-

bination of event probabilities P(Ri|S) and associated gains Gi is

called a lottery. We denote lotteries induced by strategies as
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Fig. 1. Equivalence of the rapid pointing task and choice among lotteries. The illustration in (a) shows an example stimulus configuration with the mean
end points for three of the many possible visuo-motor strategies. The subject can touch within a shaded penalty region (R1), an unshaded circular reward
region (the target; R3), both (R2), or neither (R4). Each region has an associated gain (penalty). Next to each of the three end points is the expected gain,
assuming the penalty for touching the shaded region is�500 points, the reward for touching the target region is 100 points, and the subject’s variability
matches that of subject N.K. (s5 3.81 mm). The illustrations in (b) show the stimulus configurations used in Sessions 2 through 5 (selection and key-press
movements). The green target (shown here as a solid black outline) and penalty areas were circular, with a radius of 28 pixels (8.4 mm). Penalty values
were color coded as follows: gray (shown here as a dashed outline) 5 penalty of 0 points; blue (shown here as light shading) 5 penalty of�100 points; and
red (shown here as dark shading) 5 penalty of�500 points. On each trial in these sessions, subjects selected one of two configurations chosen randomly
from the eight shown here (or the spatially symmetric configurations with the target on the left side of the penalty region). The displacement of the target
relative to the penalty region ranged from R (the radius of the circles) to 1.75 R, as shown below the diagrams. For each configuration, the black square
indicates the mean end point that would maximize expected gain for subject N.K. The maximum expected gain (left) and the corresponding lottery (right;
see Equation 1 in the text for an explanation) for subject N.K. are also shown. Configurations marked by an asterisk were used in Session 1 (pointing
movements directed at a single configuration).
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follows:

LðSÞ ¼ PðR1jSÞ; G1; PðR2jSÞ; G2; PðR3jSÞ; G3; PðR4jSÞ; G4ð Þ:
ð1Þ

An alternative movement strategy, S0, corresponds to a second

lottery:

LðS0Þ¼ PðR1jS0Þ;G1; PðR2jS0Þ;G2; PðR3jS0Þ;G3; PðR4jS0Þ;G4ð Þ:
ð2Þ

As illustrated in Figure 1a, every mean end point corresponds to

a lottery with an expected gain, that is, the number of points a

subject is expected to earn, on average, having adopted a

strategy with that mean end point. Figure 1a indicates the ex-

pected gain of several mean end points, based on the measured

end-point variability of subject N.K. from the experiment we

report here. The expected gain of movements aimed at the lo-

cation marked by the black triangle is less than that corre-

sponding to movements aimed at the location marked by the

black circle. However, there are many other possible mean end

points and corresponding lotteries, each with its associated

expected gain. By choosing among possible strategies, subject

N.K., in effect, selected among possible lotteries.

The results of our previous experiments indicate that subjects

choose strategies maximizing, or nearly maximizing, expected

gain. Efficiency was defined as the number of points won relative

to the number expected if an optimal strategy was used. Sub-

jects’ efficiencies were typically above 90% (Trommershäuser

et al., 2003a, 2003b). This level of efficiency is higher than that

for target selection in visual search (Eckstein, Beutter, & Stone,

2001; Najemnik & Geisler, 2005). In traditional decision-

making tasks, subjects choosing between lotteries often fail to

maximize expected gain (Bell, Raiffa, & Tversky, 1988; Kah-

neman, Slovic, & Tversky, 1982; Kahneman & Tversky, 2000).

In the study reported here, we tested whether subjects select

their motor strategy on the basis of an estimate of expected gain.

We forced subjects to rapidly choose one of two configurations

differing in expected gain, thereby requiring the subjects to

make quick estimates of the expected gains of the two config-

urations. A configuration’s expected gain is a complex function

of motor noise, the payoff for each region, and the spatial ar-

rangement of regions (Fig. 1b; see also the section titled ‘‘Model

of Optimal Movement Planning and Choice Between Lotteries’’).

We investigated whether subjects would be able to rapidly es-

timate and compare the expected gains of two configurations.

METHOD

Apparatus

The apparatus was similar to that described in our previous

studies (Trommershäuser et al., 2003a, 2003b). Subjects were

seated in front of a monitor equipped with a touch screen

(AccuTouch, Elo Touchsystems, Menlo Park, CA) and instructed

to touch objects on the screen within a predefined time window.

In some sessions, subjects pressed a keyboard key instead of

touching the screen. The space bar of the keyboard constituted

the start position, which was located 27 cm in front of and 34 cm

below the center of the screen. The viewing distance was 52 cm.

The experiment was run using the Psychophysics Toolbox

(Brainard, 1997; Pelli, 1997) on a Dell Optiplex computer

(270GX). A calibration procedure was performed before each

session to ensure that the touch-screen measurements were

aligned with the visual stimuli.

Stimuli and Experimental Design

The experiment comprised six 50-min sessions, run on 6 sep-

arate days. In the first session, subjects learned to respond be-

fore the time limit. This training session was followed by a

pointing-movement session (referred to as Session 1), in which

subjects pointed at single configurations. In the remaining four

sessions, subjects chose one of two displayed stimulus config-

urations, either by rapidly pointing at it (Sessions 2 and 3, se-

lection movements) or by pressing a button (Sessions 4 and 5,

key-press movements). The session in which subjects pointed at a

single configuration (Session 1) was run before the four sessions

in which subjects selected between two configuration (Sessions

2–5) to make sure subjects assigned the correct penalty value to

each color (see the next paragraph). We refer to movements

directed at one of two configurations as selection movements (in

contrast to pointing movements directed at a single configu-

ration).

Each stimulus configuration consisted of target and penalty

regions. The penalty region was circular and colored gray

(penalty 5 0 points), blue (penalty 5 �100 points), or red

(penalty 5 �500 points; Fig. 1b). The target region (reward 5

100 points) was also circular; it was marked by a green edge and

was unshaded so that the overlap with the penalty circle would

be readily visible. Target and penalty regions had radii R of 28

pixels (8.4 mm). The target region was displaced horizontally

from the penalty region, either to the left or right, with the di-

rection chosen randomly on each trial. The set of configurations

used for selection tasks (Sessions 2–5) included the six config-

urations used in Session 1 and two additional configurations with

a penalty value of�500 points and displacements different from

those used in Session 1 (Fig. 1b).

In the training session, there were two possible displacements

of the penalty circle away from the target circle ( far displace-

ment 5 2R, middle displacement 5 1.5R) and two penalty va-

lues (0 and �100 points). The session started with 30 warm-up

trials with only a single green target and a time limit of 1.5 s,

followed by a block of 36 trials with only a single green target

and a shorter time limit of 950 ms. The next two blocks of 36

trials contained stimulus configurations with both target and

penalty circles. The penalty was 0 points in the first block and

�100 points in the second. Each block contained nine repeti-

tions of each of the four spatial configurations (middle vs. far
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displacement, penalty displaced left vs. right), in randomized

order. In the remaining six blocks of the learning session (36

trials each), the penalty values alternated between 0 and �100

points, and the time limit was reduced to 700 ms, the time limit

imposed from then on.

The pointing-movement session (Session 1) started with 12

warm-up trials in which only the target circle was displayed,

followed by 12 blocks of 32 trials. Each of these blocks consisted

of eight repetitions of each of four stimulus configurations

(leftward or rightward displacement of the penalty circle by R

or 1.5R, called near and middle displacement, respectively).

Successive blocks had penalty values of 0, �100, �500, 0,

�100, �500, and so on for a total of 12 blocks.

The two following selection-movement sessions (Sessions 2

and 3) each consisted of 342 trials (330 trials preceded by 12

warm-up trials). The 660 trials were 20 repetitions (completely

randomized design) of each possible pair of stimulus configur-

ations (chosen from the eight configurations in Fig. 1b), ex-

cluding pairs in which both configurations had penalty values of

0 points, but including pairs of identical configurations, to

control for possible lateral judgment biases. Thus, there were 33

possible configuration pairs. On each trial, one of the configur-

ations, chosen randomly, was displayed to the left of the screen’s

center, and the other one to the right; the amount of shift was in

the range from 15 to 35 pixels (4.5–10.5 mm) and was chosen

randomly and independently for the two configurations. Simi-

larly, one configuration was shifted upward and the other

downward (chosen randomly), with the amounts of shift chosen

randomly (range: 7–27 pixels, or 2.1–8.1 mm). The displace-

ments of the two configurations were in opposite directions to

avoid accidental hits into the ‘‘wrong’’ configuration. The time

limit for response was the same as in Session 1 (700 ms).

The final two sessions, the key-press-movement sessions

(Sessions 4 and 5), consisted of the same number and sequence

of trials as Sessions 2 and 3, to control for possible trial-by-trial

effects. The time limit for response was still 700 ms, even though

subjects needed less time to complete these button-press re-

sponses.

Procedure

In Sessions 1, 2, and 3, a white fixation cross indicated the start

of each trial. The subject was required to depress the space bar

of the keyboard with the same finger that he or she would use

later to touch the screen. Next, the color of the fixation cross

changed to blue. After a random delay of between 400 and

600 ms, the stimulus configuration or pair of configurations

appeared. The subject viewed the stimulus configuration for

400 ms,2 after which a 1000-Hz tone indicated that the subject

should start the movement. A trial was aborted if the subject

released the space bar earlier than 100 ms after presentation of

the tone. The subject was required to touch the screen within

700 ms after the tone to avoid a time-out penalty of 700 points. If

the subject touched the screen within the area of the target or

penalty region, the region that was hit ‘‘exploded’’ graphically,

and the subject received the points associated with that region.

Then, the subject received feedback about the points scored in

that trial, followed by feedback on the total accumulated points

for that session.

In key-press-movement trials (Sessions 4 and 5), the displays

were identical, and subjects were again instructed to select one

of two configurations (as in Sessions 2 and 3), but in this case

they made their choice by pressing one of two keys. They were

told that rewards and penalties would be based on performance

in Sessions 2 and 3. Once a subject made a choice, the points for

that trial were awarded by simulating that subject’s movements

(on the basis of the subject’s performance in Sessions 2 and 3).

The simulated end point was sampled from a bivariate Gaussian

distribution whose mean and variance matched those estimated

for the corresponding configuration from Sessions 2 and 3 (end-

point variability ranged from 3.3 to 3.8 mm across subjects). If

the simulated end point fell within the area of the target or

penalty region, the corresponding region ‘‘exploded’’ graphic-

ally, and the points associated with that region were added to or

subtracted from the subject’s winnings. Then, the subject re-

ceived feedback exactly as in Sessions 2 and 3.

Subjects and Instructions

Six subjects participated in the experiment. The subjects were

4 male and 2 female students at the University of Giessen,

Germany, and ranged in age from 22 to 29. All but 1 were

right-handed, and all used their dominant hand to perform the

experiment. All subjects had normal or corrected-to-normal

vision. They had given their informed consent before testing and

were paid for their participation. All were unaware of the hy-

pothesis being tested. Subjects were informed of the payoffs and

penalties before each block of trials. They were told that the total

score over the six sessions would be converted into a bonus

payment of 10b per 1,000 points; the purpose of this payment

was to motivate fast, accurate responses.

Model of Optimal Movement Planning and Choice

Between Lotteries

In previous work, we developed a model of optimal movement

planning based on statistical decision theory (Trommershäuser

et al., 2003a, 2003b). Here, we briefly summarize the ideas

behind our model and explain how it applies to the choice be-

tween lotteries.

Our model is based on the finding that motor responses, par-

ticularly if executed under a tight time constraint, are variable

(Fitts & Petersen, 1964; Meyer, Abrahams, Kornblum, Wright,

2The interval of 400 ms matches the time required for a representation of
expected value to build up in the lateral intraparietal area (LIP) in monkeys, as
measured through single-unit recording (Platt & Glimcher, 1999; Roitman &
Shadlen, 2002; Sugrue, Corrado, & Newsome, 2004).
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& Smith, 1988). We identify a visuo-motor strategy S with the

mean end point ð�x; �yÞ on the screen. In our experiments,

movement end points are distributed around this mean end point

according to a bivariate Gaussian distribution,

pðx; yj�x; �y; sx; syÞ ¼
1

2psxsy
exp � x� �xð Þ2=2s2

x

h i

� exp � y� �yð Þ2=2s2
y

h i
: ð3Þ

Furthermore, once subjects are practiced in the task, the vari-

ance is isotropic (i.e.,s5sx 5sy) and constant throughout the

experiment, independent of the mean end point.

Consider a configuration for which the penalty value is�500.

A movement can end in one of four regions: penalty only (Region

R1, gain G1 5 �500), target-penalty overlap (Region R2, gain

G2 5 �400), target only (Region R3, gain G3 5 100), or neither

target nor penalty (i.e., background; Region R4, gain G4 5 0).

The probability of hitting inside region Ri is defined by

PðRij�x; �y; sÞ ¼
Z

Ri

pðx; yj�x; �y; sÞ dx dy ð4Þ

Thus, the choice of ð�x; �yÞ simultaneously fixes the probability

P(Ri|S) of hitting each of the four regions Ri (i 5 1, . . . , 4).

Hence, each choice of mean end point ð�x; �yÞ on the screen

corresponds to a lottery:

Lð�x; �y;sÞ ¼ ðPðR1 j�x; �y; sÞ;G1; PðR2 j�x; �y;sÞ;G2;

PðR3 j�x; �y;sÞ;G3; PðR4 j�x; �y;sÞ;G4Þ: ð5Þ

In selecting among infinitely many possible mean end points

on the screen, the subject in effect selects among an infinite

number of lotteries. For the stimulus configurations of our ex-

periment, there is a single mean end point ð�xopt; �yoptÞ corre-

sponding to the lottery Lð�xopt; �yopt; sÞ with maximum expected

gain (see Trommershäuser et al., 2003a, for typical examples of

distributions of expected gain). Our previous studies indicate

that subjects choose mean end points corresponding to lotteries

that nearly maximize expected gain.

In the present study, we asked whether subjects make choices

based on a representation of expected gain. Choosing between

configurations involves two steps. First, the subject must judge

which configuration is more ‘‘promising.’’ Second, the subject

has to point at the chosen configuration.

If subjects consistently select the configuration with higher

maximum expected gain (MEG), we can conclude that they ef-

fectively have an internal ordering of the configurations based

on an estimate of each configuration’s expected gain. We com-

pared the subjects’ preference for each configuration with that

predicted by MEG. This prediction was different for each sub-

ject and was computed using each subject’s end-point variability

s. Figure 1b shows the ordering of the configurations by MEG,

the corresponding optimal mean end points ð�xopt; �yoptÞ, and the

lotteries corresponding to MEG for 1 of the subjects (N.K., with

s 5 3.81 mm).

Data Analysis

In Sessions 1 through 3, for each trial, we recorded the reaction

time (time between the tone and release of the space bar),

movement time (time from movement onset until the screen was

hit), screen position that was hit, and score. Trials in which the

subject initiated the movement less than 100 ms after presen-

tation of the start signal or hit the screen later than 700 ms after

presentation of the start signal were excluded from analysis.

Data points that were more than 2 cm from any target center were

classified as errors (e.g., knuckle hits) and were excluded from

analysis. Each subject contributed approximately 384 data

points in Session 1, approximately 660 data points for Sessions

2 and 3 combined, and 660 data points for Sessions 4 and 5

combined (20 repetitions of each pair of configurations).

Movement end points were recorded relative to the center of the

target circle. The end points for symmetric configurations (i.e.,

configurations that differed only in whether the target was dis-

placed to the left or right of the penalty circle) did not differ

significantly, so the data were collapsed across symmetric con-

ditions.

Efficiency for Different Types of Judgments

To examine whether efficiency in the motor task differed for

pointing movements compared with selection movements, we

computed efficiency for performance in Session 1 and in Ses-

sions 2 and 3 combined. We define efficiency in our task as the

actual score divided by the optimal score derived from the MEG

movement-planning model. The actual score was computed for

each subject individually, summed over all conditions (config-

urations or pairs of configurations). Performance was classified

as significantly different from optimal when the actual score

fell outside the 95% confidence interval of optimal performance

(see Trommershäuser et al., 2003a, for a discussion of how to

compute this range of efficiencies).

Preference for Configurations With Higher MEG

We computed the MEG (based on each subject’s variability and

the optimal strategy) for each configuration used in Sessions

2 through 5. We emphasize that the subjects were choosing

between two configurations, each of which had an MEG that

depended on the configuration and the subject’s motor uncer-

tainty. To test whether subjects preferred the configuration with

higher MEG, for each subject, we computed the proportion of

trials, pooled over all configuration pairs, in which the config-

uration with higher MEG was chosen and tested whether this

proportion was significantly greater than .5 (binomial test). Next,

we computed the choice probability (the proportion of times the

configuration with higher MEG was chosen) for each subject and

each configuration pair for which the two MEGs differed. We

then tested whether the majority of these choice probabilities

were above .5 using a one-tailed binomial test.
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RESULTS

Pointing and Selection Movements Rely on the Same

Movement Plan

We considered whether pointing movements directed at a single

configuration differed from movements to select one of two

configurations. The latter movements involved a choice about

which configuration to point at. We therefore examined whether

reaction and movement times for pointing movements differed

from those for selection movements. Reaction times were shorter

for selection (Sessions 2 and 3) than for pointing (Session 1)

movements (Wilcoxon signed rank test, p < .01 and prep > .953

or better for all subjects). It is surprising that reaction times were

slightly faster for selection movements, as average reaction

times typically increase with the number of response alterna-

tives (Hick, 1949; Hyman 1953). As Sessions 2 and 3 were al-

ways run after Session 1, we attribute this reduction in reaction

time to increased practice, not to a difference in movement plan.

We next compared movement times to determine whether

movement dynamics differed between pointing and selection

movements. Movement times differed significantly across spa-

tial and penalty conditions for pointing and selection move-

ments for all subjects (Wilcoxon signed rank test, p < .05 and

prep> .88 or better for all subjects), showing no consistent trend.

We also compared end points for pointing and selection

movements. Most subjects moved their mean end point further

away from the penalty region when the penalty increased (Fig. 2)

and when the penalty region was closer to the target region (data

not shown), as we have found previously (Trommershäuser et al.,

2003a, 2003b). This shift was similar for movements directed

at a single configuration compared with movements selecting

one of two configurations (r 5 .439, p 5 .032, prep 5 .91; cor-

relation computed across end points from Session 1 and from

Sessions 2 and 3 for all conditions in which the penalty value

was nonzero).

Efficiency was equally high for pointing and selection

movements (pointing: 94.4–118.4% across subjects; selection:

97.8–107.1% across subjects). No subject’s performance in ei-

ther condition differed significantly from MEG. We conclude

that pointing and selection movements rely on the same move-

ment plan.

Subjects Prefer Configurations With Higher Expected

Gain

We examined whether subjects based their selection of a con-

figuration on an estimate of expected gain. We first determined

the MEG for each configuration (again based on the subject’s

variability s; the value of s ranged from 3.3 to 3.8 mm across

subjects). We calculated for each subject the proportion of trials

on which the higher-MEG configuration was chosen and found

that subjects chose the configuration with higher MEG on the

majority of selection and key-press trials (selection: proportion

ranged from .73 to .87 across subjects; key-press: .66 to .91

across subjects; p < .001 for all subjects for both selection and

key-press trials). Next, we computed the proportion of choice

probabilities (the proportion of times the configuration with

higher MEG was chosen) that were greater than .5, pooled over

subjects and configuration pairs that differed in MEG. This

proportion was significantly greater than .5 (fraction of config-

uration pairs; selection movements: .883, p < .001; key-press

movements: .877, p < .001).

Finally, we asked whether subjects based their selection

judgments on estimates of MEG or on some monotonic trans-

formation of MEG, MEG0 5 c(MEG). We modeled the choice

process as a signal detection observer that attempts to select the

higher-MEG configuration given estimates of the two values of

MEG0 perturbed by equal-variance Gaussian noise e. We in-

troduced e to model the subject’s uncertainty in assessing MEG 0

rapidly and assumed that, on each trial, the subject formed the

decision variable D:

D ¼ cðMEG2Þ � cðMEG1Þ þ e; ð6Þ

where MEGi (i 5 1, 2) denotes the MEG of each configuration,

c is an increasing transformation, and the subject’s uncertainty

e: Normal ð0; s2
GÞ is modeled by additive Gaussian noise. We

assumed the subject chose the second configuration if and only if

the value of D was greater than 0. We fit this model to the choice

data for each subject and used a nested hypothesis test (Mood,

Graybill, & Boes, 1974, pp. 441 ff.) to test the hypothesis that the

transformation c is the identity.

Fig. 2. Horizontal shift in end point away from the center of the target for
pointing versus selection movements in the near condition (i.e., displace-
ment of the target relative to the penalty region 5 1 radius). Positive values
indicate shifts away from the penalty region. Results for penalties of�100
and �500 are graphed separately for the 6 subjects. Error bars indicate
�1 SEM.

3The prep statistic is the probability of finding the observed effect in the same
direction (e.g., experimental mean higher than control mean) if the study were
repeated without changes in methods (Killeen, 2005).
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The choice probabilities were fit by two models. In the simpler

model, we assumed that selection was based on the actual mon-

etary outcomes assigned to each configuration (i.e., MEG0 5

MEG), and only s2
G was varied to fit the data (fit values for sG

ranged from 13.10, for M.S., to 28.03, for P.S.). In the more

elaborate model, s2
G was fixed, MEG0 of one configuration was

fixed, and the other values of MEG0 were varied to fit the data,

subject to the constraint that they preserved the order of the

corresponding MEG values. This resulted in six free parameters,

as the two zero-penalty configurations shared the same value of

MEG, and hence of MEG0 as well. We rejected the hypothesis that

cwas linear ( p< .001, prep> .99, for all subjects). Figure 3 shows

that for selection movements, MEG0 was a convex function of MEG

and that the form was remarkably consistent across subjects.

Figure 4 plots choice probability separately for each subject and

configuration pair as a function of the difference in MEG0 values

for the two members of each pair. The quality of the fit is excellent.

CONCLUSION

We studied human movement planning under risk in a task in

which selecting the movement goal involved an explicit choice

between two possible goal configurations that differed in ex-

pected gain (i.e., the monetary rewards that could be expected

when pointing at that configuration). Subjects preferred con-

figurations with higher expected gain, regardless of whether they

selected one of the configurations by pointing at it or by pressing

a button. Movements directed at a single stimulus configuration

exhibited the same movement dynamics as movements selecting

one of two configurations. Selection movements did not differ

from pointing movements and were executed with the same high

efficiency. Our results suggest that movements under risk rely on

rapid judgments about expected gain and that subjects base

their judgments on internal estimates of expected gain that are a

nonlinear function of actual expected gains.

We have argued that movement tasks are formally equivalent

to decision making under risk. However, in marked contrast to

the grossly suboptimal performance of human subjects in tra-

ditional economic decision-making experiments, our subjects’

performance was often indistinguishable from optimal. Our re-

sults are consistent with the findings of Gigerenzer and Gold-

stein (1996) and of Weber, Shafir, and Blais (2004): Decision

makers have difficulty reasoning with explicitly stated prob-

abilities. Weber et al. found that experience-based choices do

not exhibit the same suboptimality as pencil-and-paper tasks

involving explicit probabilities. These results hint that the

suboptimalities of human decision makers in the latter tasks are

not characteristic of the large number of movement decisions

people make each day.
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Fig. 4. Choice probability as a function of difference D in transformed maximum expected gain, MEG0

(from Fig. 3; see also Equation 6). Data for each subject and for selection and key-press movements are
graphed using different symbols. The solid curve is the prediction of the model.
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