How do infants and adults process communicative events in real time?

Amy Yamashiro *, Athena Vouloumanos

Department of Psychology, New York University, New York, NY 10003, USA

ARTICLE INFO

Article history:
Received 27 November 2017
Revised 4 April 2018

Keywords:
Speech perception
Communication
Infant eye tracking
Real-time processing
Third-party interactions
Cognitive development

ABSTRACT

Speech allows humans to communicate and to navigate the social world. By 12 months, infants recognize that speech elicits appropriate responses from others. However, it is unclear how infants process dynamic communicative scenes and how their processing abilities compare with those of adults. Do infants, like adults, process communicative events while the event is occurring or only after being presented with the outcome? We examined 12-month-olds’ and adults’ eye movements as they watched a Communicator grasp one (target) of two objects. During the test event, the Communicator could no longer reach the objects, so she spoke or coughed to a Listener, who selected either object. Infants’ and adults’ patterns of looking to the actors and objects revealed that both groups immediately evaluated the Communicator’s speech, but not her cough, as communicative and recognized that the Listener should select the target object only when the Communicator spoke. Furthermore, infants and adults shifted their attention between the actors and the objects in very similar ways. This suggests that 12-month-olds can quickly process communicative events as they occur with adult-like accuracy. However, differences in looking reveal that 12-month-olds process slower than adults. This early developing processing ability may allow infants to learn language and acquire knowledge from communicative interactions.

© 2018 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail address: amy.yamashiro@nyu.edu (A. Yamashiro).

https://doi.org/10.1016/j.jecp.2018.04.011
0022-0965/© 2018 Elsevier Inc. All rights reserved.
Introduction

Speech allows people to quickly and efficiently transfer information to others. Early in development, understanding this communicative function of speech helps infants to navigate the social world and acquire knowledge in social interactions (reviewed in Vouloumanos & Waxman, 2014). What we know about infants’ understanding of communication is largely based on violation-of-expectation (VOE) methods (e.g., Cheung, Xiao, & Lai, 2012; Krehm, Onishi, & Vouloumanos, 2014; Martin, Onishi, & Vouloumanos, 2012; Song, Onishi, Baillargeon, & Fisher, 2008; Vouloumanos, Martin, & Onishi, 2014; Vouloumanos, Onishi, & Pogue, 2012) or play-based methods (e.g., Akhtar, Jipson, & Callanan, 2001; Grosse, Behne, Carpenter, & Tomasello, 2010; Liszkowski, Carpenter, & Tomasello, 2008; Schulze & Tomasello, 2015) that only provide evidence for how infants evaluate communicative events and do not assess how infants process the dynamics of communication as it unfolds in real time. Recent eye tracking studies have shown that infants recognize that speech is directed at others (Thorgrimsson, Fawcett, & Liszkowski, 2015). But no study of real-time processing has examined whether infants understand that speech (but not non-speech) may transfer information to a listener, eliciting an appropriate response. In this study, we asked whether infants and adults process communicative events involving speech or non-speech in real time while the event is occurring or retrospectively only after seeing the outcome and, moreover, whether infants and adults anticipate the outcome of a communicative event by making predictions about how others will respond.

Within their first year of life, infants use speech to learn about the world and the people around them. Infants treat others' speech and non-speech as functionally distinct when categorizing objects (Balaban & Waxman, 1997; Ferry, Hespos, & Waxman, 2010; Fulkerson & Waxman, 2007), labeling objects (Mackenzie, Graham, & Curtin, 2011), and individuating objects (Xu, 2002; Xu, Cote, & Baker, 2005). Infants also use speech to identify potential communicative partners and learn from communicative interactions. By 5 months, infants match human speech, but not other human vocalizations such as laughter, to human faces rather than monkey faces (Vouloumanos, Druhen, Hauser, & Huizink, 2009). By 6 months, infants use cues such as speech and eye gaze as signals of communication and an opportunity for learning (Csibra & Gergely, 2009, 2011). Before their first birthday, infants use others’ speech to learn who to communicate with and how to interact with others.

Infants' looking time to the outcome of an event in VOE procedures (reviewed in Baillargeon, Scott, & He, 2010; see also Krehm et al., 2014; Liberman, Kinzler, & Woodward, 2014; Martin et al., 2012; Song et al., 2008; Vouloumanos et al., 2012, 2014) or their behavioral responses in play-based procedures (e.g., Akhtar et al., 2001; Grosse et al., 2010; Liszkowski et al., 2008; Schulze & Tomasello, 2015) suggest that infants understand how speech and gestures communicate information to others. VOE and play-based studies have shown that infants as young as 6 months, who have a limited receptive vocabulary (Bergelson & Swingley, 2012; Tincoff & Jusczyk, 1999, 2012), recognize that speech, but not a non-speech cough, is communicative, allowing the speaker to provide information to a listener (Martin et al., 2012; Vouloumanos et al., 2014). By 12 months, infants also recognize that speech and social actions such as clapping can inform others about observable and unobservable intentions (Cheung et al., 2012; Vouloumanos et al., 2012). At 12 months, infants will also tailor their gestures to the knowledge state of their communicative partner; infants gesture more often to an object’s location when interacting with an ignorant partner compared with a knowledgeable partner (Liszkowski et al., 2008). VOE and play-based studies suggest that by 12 months infants have some understanding of how speech and gestures communicate in social interactions and use this knowledge when interacting with others.

How long infants look at the outcome of a scene or how infants respond to an experimenter in a play-based scenario allows for broad inferences about how infants evaluate communication in social interactions. However, communication and social interactions are dynamic processes, with actions and vocalizations shifting in time and space. Within this dynamic environment, adults can quickly identify, predict, and evaluate others’ behaviors in real time as the actions are unfolding (e.g., Daum & Gredebäck, 2011; Flanagan & Johansson, 2003; Langdon & Smith, 2005). However, little is known about how infants process dynamic communicative scenes and whether they perceive and interpret
others’ actions in real time as they unfold or evaluate events after they have occurred (Aslin, 2007; Gredebäck & Daum, 2015). Infants may process a social event in at least two different ways (Gredebäck & Melinder, 2010). Infants, like adults, may be evaluating the event in real time and may even make predictions about its outcome while the event is occurring (e.g., Thorgrimsson, Fawcett, & Liszkowski, 2014; Thorgrimsson et al., 2015). Alternatively, infants may observe the entire sequence of events and only evaluate the social act retrospectively after being presented with its outcome as in habituation studies of social events (e.g., Beier & Spelke, 2012; Hamlin, 2015). Measuring infants’ eye movements with eye tracking expands on traditional VOE and play-based procedures to reveal underlying cognitive processes (Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995).

The study of infants’ eye movements has begun to reveal what infants understand about how people interact (Augusti, Melinder, & Gredebäck, 2010), how they interpret others’ behaviors, and how they make predictions about others’ actions in real time while the actions occur (Brandone, Horwitz, Aslin, & Wellman, 2014; Cannon & Woodward, 2012; Falck-Ytter, 2015; Fawcett & Gredebäck, 2013; Gredebäck & Melinder, 2010; Thorgrimsson et al., 2014, 2015). For example, infants make more gaze shifts between two actors when they engage in face-to-face conversation compared with back-to-back conversation, suggesting that 6-month-olds are sensitive to conventional patterns of social interaction (Augusti et al., 2010). Furthermore, infants as young as 10 months perform like adults in anticipating the goal of their own and others’ reaches by shifting their gaze to the goal of a reach before their own or someone else’s hand arrives at the goal (Rosander & von Hofsten, 2011). Infants’ eye movements reveal how infants evaluate others’ actions as they unfold in real time.

More recently, infants’ eye movements have given insight into how infants process and respond to communicative events involving non-verbal gestures and speech in real time while the event unfolds (Thorgrimsson et al., 2014, 2015). At 14 months, infants can predict the outcome of communicative events that consist of non-verbal gestures; infants look at a bowl in anticipation that a recipient will act on it after a gesturer points or uses a palm-up request but not when the gesturer reaches toward the bowl (Thorgrimsson et al., 2014). Although infants interpret gestures while they are occurring and before the outcome is presented, it is less clear how infants interpret a communicative event involving speech. At 12 and 24 months, infants evaluate speech, but not non-speech, as being directed at a third-party listener only when two people are face to face; after the speaker speaks, infants quickly shift their visual attention from the speaker to the listener (Thorgrimsson et al., 2015). However, these scenarios do not assess communication; because the listener never responds to the speaker, the infants cannot evaluate whether communication has occurred or whether it was successful. Therefore, it is unclear (a) whether infants understand how the listener should respond to the speaker’s speech (the outcome of the event) and (b) whether infants use that knowledge to anticipate the listener’s response to speech in the same way as they do for gestures. Given that infants within their first year seem to understand that non-verbal gestures and speech function similarly in communicative scenes (e.g., Csibra & Gergely, 2009, 2011; Gredebäck, Melinder, & Daum, 2010; Martin et al., 2012; Vouloumanos et al., 2014), 12-month-olds may interpret speech like gestures in these events—by making predictions about the outcome during the communicative events.

In the current study, we used a remote eye tracker to examine how 12-month-old infants and adults perceive and interpret the communicative function of speech in a social interaction. We showed participants a video of pre-recorded actions in a third-party scenario (Augusti et al., 2010; Fawcett & Gredebäck, 2013; Gredebäck et al., 2010; Thorgrimsson et al., 2015) during which an actor (the Communicator) alone repeatedly grasped one object (target) rather than another object (non-target), suggesting that the Communicator may prefer the target object (e.g., Cannon & Woodward, 2012; Woodward, 1998). In the test scene, the Communicator and a second actor, the Listener, were both present. Due to a change in the scene, however, the Communicator could no longer reach the objects, whereas the Listener could. The Communicator could request the target object from the Listener by using an informative vocalization such as speech (Speech condition) but should not be able to request the target object using an uninformative non-speech vocalization such as coughing (Cough condition).

We tested whether infants and adults process a communicative event in real time, while the event is occurring, or retrospectively, only after seeing the outcome, by measuring how infants’ and adults’ looking time to the Communicator, Listener, target and non-target objects changed during the Communicator’s vocalization and the Listener’s response. We predicted that participants would distribute
their attention to the actors and objects differently depending on the Communicator’s vocalization and the Listener’s response. Specifically, if participants evaluated the Communicator’s speech as communicating about the target object, they may recognize that the Listener would select the target object. However, if the Listener incorrectly selected the non-target object, participants may recognize that this is incongruent with the Communicator’s speech and look at the Listener relatively more than when she selected the target object. Similarly, if participants recognize that the Listener would select the target object in response to the Communicator’s speech, they may look anticipatorily at the target object before the Listener reached for it. In contrast, if participants recognize that a non-speech cough might not transfer information, they may look longer at the Communicator after she coughed than when she spoke because it is unusual to direct an uninformative vocalization toward a partner in a social scenario. Furthermore, participants may be agnostic about how the Listener will respond to an uninformative cough vocalization and may look equally at the Listener regardless of the object she chose. Finally, infants may look longer at the scene overall when the Communicator spoke and the Listener selected the non-target object compared with the target object as in prior studies (Martin et al., 2012; Vouloumanos et al., 2014).

Method

Participants

A total of 32 healthy, full-term infants (M\text{age} = 12 months 15 days, range = 12 months 0 days to 13 months 1 day) participated: 16 infants in the Speech condition (11 females) and 16 infants in the Cough condition (6 females). This sample size is justified by a post hoc power analysis (GPOWER; Erdfelder, Faul, & Buchner, 1996) on two key results: the interaction between vocalization and outcome on infants’ looking times to all areas of interest (AOIs) in the action segment and in the still image segment of the test trial, which yielded large effect sizes (f\text{action} = .36, f\text{still image} = .37) and 70% power at an alpha level of p < .05. Infants were recruited from maternity wards at local hospitals (New York, NY). Parents gave informed consent on behalf of their infants and received a certificate and small toys or T-shirts as gifts. Infant race was reported as 17 White, 9 mixed race, 2 African American, and 1 Asian (3 were not reported). Education levels of the primary caregivers were high, with 12 having a graduate degree, 15 having a college degree, and 2 having completed some college (3 were not reported). Data from 17 additional infants were excluded from analysis due to fussiness or crying (n = 3), inattentiveness (n = 1), insufficient gaze tracking by the eye tracker (n = 11; see “Inclusion criteria” section below), or experimenter error (n = 2).

A total of 24 adults (M\text{age} = 19.7 years, range = 18–23; 17 females) participated: 12 adults in the Speech condition (9 females) and 12 adults in the Cough condition (8 women). Adults were undergraduate students at New York University participating for course credit for a psychology class. Adult race was reported as 8 White, 7 Asian, 3 mixed race, and 1 African American (5 were not reported). Data from 4 additional adults were excluded from analysis due to insufficient gaze tracking by the eye tracker (n = 3; see “Inclusion criteria” section below) or falling asleep during the task (n = 1). All procedures were approved by the university committee on activities involving human subjects at New York University.

Procedure

Participants watched a video of two actors interacting with two novel objects based on a live action version of this study (Martin et al., 2012; Vouloumanos et al., 2014). Each participant participated in either the Speech or Cough condition. For each vocalization condition, each participant saw one Target outcome and one Non-target outcome. Each outcome consisted of three trials: two familiarization trials and one test trial composed of an action segment and a still image segment (see Fig. 1). During the familiarization trials, the Communicator was in the back window with the top of her face and arms visible. Two novel objects were within her reach. She looked briefly at each object (500 ms per object) and picked up the target object (1420 ms). The familiarization trial was presented two times, each
lasting 4 s with an interstimulus interval of 430 ms. During the action segment of the test trial, both the Communicator and Listener were present. However, the smaller opening did not allow the Communicator’s arms to pass through, so she could see but no longer reach the objects. The Listener selected either the target object or the non-target object. In the still image segment, the final image of the test trial froze for the remainder of the test trial. Areas of interest used in all trials are shown in the image of the still image segment of the test trial.

Fig. 1. Method. Infants saw a sequence of three trials in a pre-recorded video of a third-party communicative interaction. During the familiarization trials, the Communicator looked at two novel objects and grasped the target object. During the action segment of the test trial, the Communicator could no longer reach the objects, so she vocalized to the Listener using speech or cough. The Listener selected either the target object or the non-target object. In the still image segment, the final image of the test trial froze for the remainder of the test trial. Areas of interest used in all trials are shown in the image of the still image segment of the test trial.
segment of the test trial. To replicate previous VOE studies, timing for the still image segment of the test trial ended when the infant had looked away from the scene for a consecutive 2 s (Martin et al., 2012; Vouloumanos et al., 2014). Half of the participants within each vocalization saw the Target outcome first, and half saw the Non-target outcome first. See online supplementary material for an example video of the Target and Non-target outcomes.

Stimuli

The objects, actors, and vocalizations differed between the Target and Non-target outcomes. In the Target outcome, the target object was an orange, angular, hourglass-shaped object with a purple base and the non-target object was an inverted ring tower covered in pink tape. In the Non-target outcome, the target object was a gray box with a red base and rod on top and the non-target object was a yellow cone with a green coiled wire on top.

Apparatus

We report eye tracking information following the guidelines of Oakes (2010). Infants were seated upright in a high chair approximately 60 cm from a 29 × 47-cm screen in a sound-attenuated room. At a viewing distance of 60 cm, the stimulus scene measured 27.8° vertical and 43.1° horizontal visual angle. Adults were seated in a chair approximately 65 cm from the same size screen in a sound-attenuated room. Gaze was measured with the SensoMotoric Instruments (SMI) RED (sampling rate of 60 Hz) or RED-m (sampling rate of 120 Hz) infrared eye tracker system (SensoMotoric Instruments, Tetlow, Germany). SMI IView X (Version 2.8) and Experiment Center (Version 3.4) controlled the calibration and stimulus presentation. Before beginning data collection, the software obtained a two-point calibration using a telescoping bulls-eye or animated image of Elmo accompanied by soft sounds. The calibration was repeated if we did not obtain an accurate calibration. Prior to the familiarization trials, participants’ attention was drawn to the center of the screen using a telescoping bulls-eye or flashing circle. For adults, the software obtained a four-point validation using a telescoping bulls-eye at the end of data collection to assess whether tracking accuracy shifted from the initial calibration.

Inclusion criteria

Infants’ data were included if the dwell times to the entire scene recorded by the eye tracker were congruent with the dwell times for each scene coded offline by a research assistant blind to the vocalization being tested. Infants were excluded from analyses (n = 11) when there was less than 50% agreement between the eye tracker and offline-coded data, reflecting more than 50% data loss by the eye tracker, in more than two trials. Adults were excluded from analyses (n = 3) when the eye tracker did not collect data due to loss or inattention during more than 30% of the task and when validation values from the eye tracker indicated that the accuracy of tracking shifted more than 1.5° of visual angle from the initial calibration.

Data reduction and analyses

Eye tracking data were processed using SMI BeGaze eye tracking analysis software (Version 3.4). To assess infants’ and adults’ visual fixation patterns throughout the video, we defined multiple AOIs, including the Listener’s face and body (657090 pixels), the Communicator’s face (69276 pixels), and the target (70338 pixels) and non-target (69552 pixels) objects (see Fig. 1). AOIs remained the same size for the duration of the trials. However, the shapes of the Communicator and target and non-target object AOIs were adjusted to avoid overlap between AOIs when the Communicator lifted the object below her face during familiarization and when the Listener lifted the object to the Communicator during test. The eye tracker calculated fixation lengths and locations by filtering raw looking data by predetermined criteria (80 ms, 100 pixels of dispersion) for each individual participant.
Results

First, we established that our eye tracking study replicated overall looking time patterns reported in previous infant VOE studies using a similar communicative scenario (Martin et al., 2012; Vouloumanos et al., 2014). Second, we examined how infants and adults process a communicative event involving speech in real time. Specifically, to determine whether infants, like adults, interpreted the communicative event while it was occurring or evaluated it retrospectively after seeing the outcome, we examined infants’ and adults’ responses during the action segment of the test trial by analyzing infants’ overall looking times to all AOs and infants’ and adults’ time course of looking at each AOI as the actions unfolded. As an exploratory analysis, we also examined infants’ and adults’ changes in pupil diameter as the actions unfolded (see supplementary material).

Overall looking at combined AOs during the still image segment

Infants’ overall looking times to the entire scene during the still image segment replicated previous VOE findings (Martin et al., 2012). We ran a 2 (Vocalization: Speech or Cough) × 2 (Outcome: Target or Non-target) analysis of variance (ANOVA; SPSS Version 22.0, IBM Corporation, Armonk, NY, USA) with vocalization as a between-participants factor and outcome as a within-participants factor on infants’ looking time to all AOs and found a significant interaction between vocalization and outcome, F(1, 30) = 4.23, p = .05, η² = .12. Tests of simple effects suggest that when the Communicator spoke, infants looked longer at the AOs when the Listener selected the non-target object compared with the target object, t(15) = 2.84, p = .01. When the Communicator coughed, infants looked equally at the AOs when the Listener selected either object, t(15) = 0.03, p = .98 (for means and standard errors, see Table 1). There were no main effects of vocalization or outcome (both ps > .19).

Real-time processing of the communicative event during the action segment

Overall looking at combined AOs

Infants’ overall looking times to all AOs during the action segment showed the same pattern of differential looking at the Non-target outcome for Speech but not Cough as during the still image segment, revealing that infants processed the communicative event while it was occurring. We ran the same 2 × 2 ANOVA on infants’ looking time to all AOs during the action segment and found a marginal interaction between vocalization and outcome, F(1, 30) = 3.96, p = .06, η² = .10. Tests of simple effects suggest that when the Communicator spoke, infants looked longer at the AOs when the Listener selected the non-target object compared with the target object, t(15) = 2.40, p = .02. When the Communicator coughed, infants looked equally at the AOs when the Listener was selecting the non-target object compared with the target object, t(15) = 0.51, p = .62 (see Table 1). There was a main effect of vocalization, with infants looking longer at the action segment when the Communicator coughed than when she spoke, F(1, 30) = 12.38, p = .001, η² = .29, and a main effect of outcome, with infants looking longer when the Listener was selecting the non-target object compared with the target object, F(1, 30) = 4.13, p = .05, η² = .11.

The same 2 × 2 ANOVA on infant looking times to all AOs during the familiarization trials revealed no significant main effects or interactions (all ps > .19), confirming that infants attended equally

Table 1
Marginal means (and standard errors) of infants’ looking times (ms) to all AOs during the action and still image segments of the test trial.

<table>
<thead>
<tr>
<th></th>
<th>Still image</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Target</td>
<td>Non-target</td>
</tr>
<tr>
<td>Speech</td>
<td>7677 (1430)</td>
<td>10,439 (1207)</td>
</tr>
<tr>
<td>Cough</td>
<td>7484 (1430)</td>
<td>6900 (1207)</td>
</tr>
</tbody>
</table>

* p < .05.
** p < .01.
during the familiarization phase. Finally, a 2 (Vocalization: Speech or Cough) × 2 (Outcome: Target or Non-target) × 2 (Object: target or non-target) ANOVA on infants’ looking times to each object during the first 1400 ms of the first familiarization trial, before the Communicator reached for the target object, also revealed no main effects or interactions (all ps > .10), confirming that infants did not show an initial preference for either object that may have influenced their looking behavior during the test trial.

Time course of looking at individual AOIs

Next, we used linear spline models to analyze how infants’ and adults’ looking behavior to the Communicator, Listener, and target and non-target objects changed as the actions unfolded (see Fig. 2 for a timeline of the actions). Linear spline models are a flexible extension of linear or polynomial growth curve models. They can be used to analyze a nonlinear trend in which the trajectory of the trend is hypothesized to change at discrete points in time (i.e., when certain actions in the communicative event occur) (Cudeck & Klebe, 2002; Grimm & Marcoulides, 2016). The trend is divided into a sequence of connected linear segments, and the model simultaneously estimates a linear slope for the segment indicated as the baseline segment. Then, it evaluates how the slope in each remaining segment changes relative to the baseline segment (Fitzmaurice, Laird, & Ware, 2011).

First, we divided the action segment into 25 bins of 250 ms each and calculated average proportion looking times to each AOI out of looking time to the entire scene. Bins of 250 ms allow us to capture adults’ and infants’ processing abilities because adults and infants require 200 ms to initiate a gaze shift when observing an action and anticipate the outcome of an action about 200 ms before the action is complete (Rosander & von Hofsten, 2011). Second, we specified linear segments based on the timing of the actions for which we expected the trajectory of participants’ looking to change and based on infants’ and adults’ response times when processing actions and vocalizations in previous studies (e.g., Rosander & von Hofsten, 2011; Swingley & Aslin, 2000; Thorgrimsson et al., 2015). We selected a baseline segment for each AOI that contained the actions most relevant to that AOI (Segment 1 for Communicator; Segment 3 for Listener, and Segment 2 for target and non-target objects). For example, Segment 1 for the Communicator is when the Communicator looked at the Listener and vocalized, which are actions that participants should process by attending to the Communicator. Then, the model can evaluate how participants’ slope of looking at the Communicator in each comparison segment (Segments 2 and 3) changes relative to participants’ slope of looking at the Communicator when she vocalized (Segment 1). Similarly, we chose Segment 3 as the baseline segment for the Listener, which is when the Listener reached for an object and presented it to the Communicator. We hypothesized that this would elicit a change in participants’ looking behavior to the Listener. Segment 2 is the baseline segment for the target and non-target objects, which is when the Listener reached for and grasped either object, and we predicted that this would also elicit a meaningful change in participants’ looking at the objects, which could then be compared with remaining comparison segments. Segment 2 begins 500 ms earlier for the target object compared with the non-target object because we expected that participants might anticipate where the Listener would reach and increase their looking at the target object, not the non-target object, before the Listener grasped it.

Finally, we used linear models to analyze how the slope of participants’ proportion of looking at each AOI changed from segment to segment (Fig. 3 for all AOIs together and Fig. 4 for each AOI separately; graphs were made in R using ggplot2 Version 2.1.0 [R Core Team, 2013; Wickham, 2009]).
Thus, the coefficient for each baseline segment represents the slope of participants’ looking during the baseline segment. The coefficients for each comparison segment represent the change in participants’ slope of looking from the baseline segment to the comparison segment. We calculated the simple slope for each comparison segment by subtracting the coefficient for the comparison segment from the coefficient for the baseline segment (denoted as D_b).

To further examine whether participants’ changes in looking behavior to each AOI differed based on age (adult or infant), the Communicator’s vocalization (Speech or Cough), or the experimental outcome of the event (Target or Non-target), we included fixed effects of age, vocalization, experimental outcome, and their interactions with the linear segments. To limit the number of comparisons in each model and decrease the chances of Type I error, we included only the interactions for which we hypothesized an effect. All significant interactions were followed by tests of simple effects, which were corrected for multiple comparisons using the Bonferroni adjustment. Residuals for the linear spline models were approximately normally distributed, although they were slightly heteroscedastic, with some clustering at 0 and 1. However, the slight clustering did not warrant transformations to the data, which could make the results more difficult to interpret (Grayson, 2004).

Categorical diagnostic group and experimental outcome predictor variables were effects coded, such that adults, Speech vocalization condition, and Target outcome were coded as -1 and infants, Cough vocalization condition, and Non-target outcome were coded as 1. All linear spline models were analyzed using the Proc Mixed package in SAS software (Version 9.4; SAS Institute, Cary, NC, USA).

Communicator

Both infants’ and adults’ looking behavior to the Communicator changed as the actions unfolded. Across outcome, both infants and adults significantly increased their looking at the Communicator when she vocalized (Segment 1) and decreased their looking at the Communicator when the Listener

Fig. 3. Results. Time course of fixations to the Communicator (red), Listener (green), target object (blue), and non-target object (purple) during the actions segment of the test trial before the Target outcome and Non-target outcome in the Speech condition (left panel) and Cough condition (right panel) for adults (top panel) and infants (bottom panel). Gray lines indicate the times during which each action occurred. obj, object; C, Communicator; L, Listener. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
leaned forward to reach for either object (Segment 2). When the Listener selected an object and presented it to the Communicator (Segment 3), both infants and adults increased their looking at the Communicator more after she coughed ($b_{cough} = .14$, $SE = .01$, $D_{cough} = .11$, $SE = .01$), compared with when she spoke ($b_{speech} = .13$, $D_{speech} = .08$, $SE = .01$), $t(2505) = 2.45$, $p = .03$. There was a marginal interaction between vocalization and Segment 1; however, pairwise comparisons were not significant ($p = .12$) (see Fig. 2 for a timeline of the actions, Fig. 4 for raw looking behavior, and Table 2 for model estimates).
Both infants' and adults' looking behavior to the Listener also changed as the actions unfolded. Across vocalization and outcome, both infants and adults increased their looking at the Listener when the Communicator looked at the Listener (Segment 1). When the Communicator vocalized and the Listener leaned forward and began reaching for an object, infants and adults increased their looking at the Listener (Segment 2). However, infants (βinfants = .03, Δβinfants = .11, SE = .01) increased their looking at the Listener more than adults (βadults = .01, Δβadults = .07, SE = .01), t(2724) = 3.00, p = .01.

Critically for the hypothesis that participants will show differential looking at the Listener after the Communicator speaks but not when she coughs, there was a significant three-way interaction among vocalization, outcome, and Segment 2, suggesting that both infants and adults showed a larger change (increase) in their looking at the Listener after the Communicator spoke and the Listener leaned forward to reach for the non-target object (βnon-target = .02, Δβnon-target = .09, SE = .01) compared with the target object (βtarget = .01, Δβtarget = .095, SE = .01), t(2724) = 2.36, p = .04. However, when the Communicator coughed, participants showed no difference in their relative change in looking at the Listener when she leaned forward to reach for either the target object (βtarget = .03, Δβtarget = .11, SE = .01) or the non-target object (βnon-target = .03, Δβnon-target = .10, SE = .01), t(2724) = .44, p = 1.0.

There was a similar three-way interaction among vocalization, outcome, and Segment 3, suggesting that when the Listener selected an object and presented it to the Communicator (Segment 3), both infants and adults showed a marginally larger decrease in their looking at the Listener after the Communicator spoke but not when she coughed, there was a significant three-way interaction among vocalization, outcome, and Segment 2, suggesting that both infants and adults showed a larger change (increase) in their looking at the Listener after the Communicator spoke and the Listener leaned forward to reach for the non-target object compared with the target object (βtarget = .01, Δβtarget = .095, SE = .01), t(2724) = 2.36, p = .04. However, when the Communicator coughed, participants showed no difference in their relative change in looking at the Listener when she selected either the non-target object (βnon-target = −.07, SE = .01) or the target object (βtarget = −.08, SE = .01), t(2724) = 1.21, p = 46, after the Communicator coughed. Furthermore, across outcome and vocalization, infants (βinfants = −.07, SE = .01) decreased their looking at the Listener marginally more than adults (βadults = −.06, SE = .00), t(2724) = 2.00, p = .09.

Thus, when the Communicator spoke, but not when she coughed, both groups showed a larger difference between their increase in looking at the Listener in Segment 2 and their decrease in looking at the Listener in Segment 3 when the Listener reached for the non-target object compared with the target object. Because spline models assume that the linear functions in each segment are connected, a larger difference in slopes may suggest that the peak of the curve, where Segments 2 and 3 meet, was higher and participants immediately showed a greater proportion of looking after the Communicator spoke or the target object than when the Listener selected either the non-target object (βnon-target = −.06, SE = .01) or the target object (βtarget = .01, SE = .01), t(2724) = 10.43, p < .001; non-target object: βinfants = −.12, SE = .01, t(2727) = 13.57, p < .001]. Finally, when the Listener presented an object to the Communicator (Segment 3), participants decreased their looking at whichever object the Listener presented [target object: βtarget = −.04, Δβtarget = −.22, SE = .01, t(2723) = 10.43, p < .001; non-target object: βnon-target = −.08, Δβnon-target = −.29, SE = .02, t(2723) = 11.82, p < .001].

Across both outcomes, a main effect of age was qualified by an Age by Segment 3 interaction suggesting that when the Listener presented the non-target object to the Communicator (Segment 3), adults (βadults = −.07, Δβadults = −.19, SE = .02) showed a greater change (decrease) in their slope of looking at the non-target object compared with infants (βinfants = −.01, Δβinfants = −.12, SE = .01), t(2723) = 3.14, p = .002. A larger decrease in looking at the non-target object when the Listener presented it to the Communicator (Segment 3) compared with when the Listener selected the non-target object (Segment 2) may suggest that the peak of the curve was higher and adults showed a greater proportion of looking at the non-target object immediately after the Listener selected it compared with infants and looked away from the non-target object faster as the Listener presented it to the Communicator compared with infants.
Table 2
Fixed effects of linear spline models for age, outcome, time segments, and their interactions predicting proportion of looking at the Communicator, Listener, and target and non-target objects.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Communicator</th>
<th>Listener</th>
<th>Target object</th>
<th>Non-target object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.21</td>
<td>0.57</td>
<td>0.04</td>
<td>0.37</td>
</tr>
<tr>
<td>Age</td>
<td>-0.07</td>
<td>-0.08</td>
<td>-0.04</td>
<td>-0.13</td>
</tr>
<tr>
<td>Vocalization</td>
<td>-0.06</td>
<td>-0.08</td>
<td>-0.04</td>
<td>-0.12</td>
</tr>
<tr>
<td>Outcome</td>
<td>-0.01</td>
<td>-0.03</td>
<td>-0.02</td>
<td>-0.07</td>
</tr>
<tr>
<td>Seg1</td>
<td>0.04</td>
<td>0.11</td>
<td>0.09</td>
<td>-0.09</td>
</tr>
<tr>
<td>Seg2</td>
<td>-0.11</td>
<td>0.09</td>
<td>-0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>Seg3</td>
<td>0.10</td>
<td>-0.07</td>
<td>-0.02</td>
<td>-0.12</td>
</tr>
<tr>
<td>Age * Seg1</td>
<td>0.01</td>
<td>0.02</td>
<td>-0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>Age * Seg2</td>
<td>-0.01</td>
<td>-0.02</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Age * Seg3</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Vocalization * Seg1</td>
<td>0.01</td>
<td>-0.02</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Vocalization * Seg2</td>
<td>-0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Vocalization * Seg3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Outcome * Seg1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Outcome * Seg2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Outcome * Seg3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Vocalization * Outcome</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Age * Vocalization * Seg1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Age * Vocalization * Seg2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Age * Vocalization * Seg3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Vocalization * Outcome</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Note. Age was coded as adult = –1, infant = 1. Vocalization was coded as Speech = –1, Cough = 1. Outcome was coded as Target = –1, Non-target = 1. Segment 1 was indicated as the baseline segment for the Communicator, Segment 2 was indicated as the baseline segment for the target and non-target objects, and Segment 3 was indicated as the baseline segment for the Listener. Coefficients for comparison segments represent the change in slope from the baseline segment to the comparison segment. CI, confidence interval; Seg, Segment.
There were significant interactions among age, outcome, and Segments 1 and 2 for looking to the target object and among age, vocalization, and Segment 2 for looking to the non-target object; however, pairwise comparisons were not significant ($p > .61$) (see Fig. 2 for a timeline of the actions, Fig. 4 for raw looking behavior, and Table 2 for model estimates).

Discussion

Whereas previous VOE studies (e.g., Krehm et al., 2014; Martin et al., 2012; Song et al., 2008; Vouloumanos et al., 2012, 2014), play-based procedures (e.g., Grosse et al., 2010; Liszkowski et al., 2008; Schulze & Tomasello, 2015), and eye tracking studies (Thorgrimsson et al., 2015) have revealed much about what infants understand about communicative social interactions, we examined how infants and adults process communicative events in real time while they occur. Tracking infant and adult eye movements during a communicative event and its outcome suggests that 12-month-olds, like adults, recognize the communicative function of speech in a social exchange and process communicative events while they are occurring. At the same time, differences in 12-month-olds’ and adults’ looking behaviors suggest that infants’ processing speeds can be slower than those of adults.

Infants’ looking behavior during the event suggested that they begin processing communicative events while they are occurring. Infants’ overall looking time to the AOIs during the action segment of the test trial reflected similar patterns of looking as infants’ overall looking times to the still image segment, suggesting that, as the event was occurring, infants recognized that the Listener would select the target object after the Communicator spoke but not when she coughed. Thus, infants understand how others should respond to speech, but not non-speech, as the actions are unfolding and do not need to wait until the actions are complete to begin processing or interpreting the scene. In other words, infants do not need to see the outcome of a communicative event before they begin to process it. Our findings first replicate previous findings from VOE studies (Martin et al., 2012; Vouloumanos et al., 2014) in showing that infants understand how speech communicates in social interactions because they look longer at the incongruent outcome of communicative scenes. Our findings expand on these VOE studies to suggest that infants use their understanding of the communicative function of speech to interpret or process communicative events while they are occurring but do not necessarily anticipate the outcome of a communicative interaction.

The way in which infants and adults processed the communicative event by shifting their attention between the AOIs during the action segment of the test trial reflected similar patterns of looking as infants’ overall looking times to the still image segment, suggesting that, as the event was occurring, infants recognized that the Listener would select the target object after the Communicator spoke but not when she coughed. Thus, infants understand how others should respond to speech, but not non-speech, as the actions are unfolding and do not need to wait until the actions are complete to begin processing or interpreting the scene. In other words, infants do not need to see the outcome of a communicative event before they begin to process it. Our findings first replicate previous findings from VOE studies (Martin et al., 2012; Vouloumanos et al., 2014) in showing that infants understand how speech communicates in social interactions because they look longer at the incongruent outcome of communicative scenes. Our findings expand on these VOE studies to suggest that infants use their understanding of the communicative function of speech to interpret or process communicative events while they are occurring but do not necessarily anticipate the outcome of a communicative interaction.

The way in which infants and adults processed the communicative event by shifting their attention between the AOIs revealed that infants process communicative events with adult-like accuracy. When the Communicator spoke or coughed, both infants and adults looked at the Communicator. Then, they looked at the Listener when she leaned forward and reached for an object. Just as the Listener grasped an object, participants looked at whichever object she selected. Finally, when the Listener presented the object to the Communicator, participants looked back at the Communicator. Just as infants process non-verbal actions similarly to adults (reviewed in Gredebäck & Daum, 2015; see also Rosander & von Hofsten, 2011), our findings suggest that infants and adults can also process communicative vocal events in very similar ways.

Both infants and adults differentiated between potentially communicative events involving speech and events involving non-speech, showing that both groups understand that speech, but not non-speech, transfers information in a social scenario. Consistent with our predictions, infants’ and adults’ time course of looking at the Listener suggests that participants recognized the Listener would choose the target object only if the Communicator spoke and looked faster and longer if she selected the non-target object instead. Both infants and adults seemed agnostic about what the Listener would do when the Communicator coughed, showing similar looking behaviors whether the target or non-target object was chosen. For infants, speech is not only directed toward others (Thorgrimsson et al., 2015) but also influences how others will respond. Both infants and adults also identified a cough as an incongruent vocalization in a communicative context. When the Listener presented an object to the Communicator, participants looked at the Communicator more after she coughed than after she spoke. This may reflect infants’ and adults’ uncertainty at how an uninformative cough vocalization functions in a communicative event and suggests that they might not expect coughing to elicit a response from the Listener at all (Thorgrimsson et al., 2015).
Overall, infant and adult participants show striking similarities in the way they understand and process communicative events involving speech: they processed the communicative event as it was occurring but did not anticipate the outcome of the communicative event. However, infants also differed from adults in their attention to the Listener and the non-target object as the actions unfolded, suggesting that infants' processing speeds can be slower than those of adults. Across vocalization and outcome, infants looked at the Listener more than adults when the Communicator vocalized and the Listener leaned forward and began reaching for an object. Furthermore, for both speech and coughs, adults, compared with infants, looked away from the non-target object faster when the Listener presented the non-target object to the Communicator. These differences in looking behavior between infants and adults suggest that infants may have required more time to look at the Listener when she responded to the Communicator and at the non-target object when the Listener presented it to the Communicator to process these actions compared with adults. These findings are consistent with previous research suggesting that infants take slightly longer to shift their gaze when processing others' object-directed actions compared with adults (e.g., Flanagan & Johansson, 2003; Rosander & von Hofsten, 2011). Despite differences in processing speeds, overwhelming similarities in infants' and adults' looking behaviors suggest that 12-month-olds understand and process communicative events with adult-like accuracy.

We hypothesized that infants and adults may make predictions about the outcome of the communicative event before it occurred by looking anticipatorily at the target object after the Communicator spoke and before the Listener selected the object (Brandone et al., 2014; Cannon & Woodward, 2012; Fawcett & Gredebäck, 2013; Thorgrimsson et al., 2014). We found no evidence that infants and adults looked in anticipation at the object that was congruent with the Communicator's vocalization. Both infants and adults began increasing their looking at the target object 750 ms before the Listener grasped the target object, which is 500 ms earlier than when they began increasing their looking at the non-target object. However, this pattern did not differ based on the Communicator's vocalization. This lack of clear anticipation may be because the scene was complex and participants did not have enough time to look before the Listener responded to the Communicator's vocalization. Previous studies assessing infants' anticipatory looks used simple scenes that examined the anticipation of only a single reaching action (Brandone et al., 2014), as compared with the two actors vocalizing and interacting with multiple objects in the current study. Furthermore, infants were often allowed a longer period of time (6–8 s vs. 700 ms in the current study) to observe an action before anticipating its outcome (Brandone et al., 2014; Fawcett & Gredebäck, 2013), or the outcome of the action was never presented (Brandone et al., 2014; Cannon & Woodward, 2012). Our complex scene and short time window may have precluded infants and adults from making clear anticipatory looks.

Limitations to the current study included the fact that each infant and adult saw the action segment of the test trial only once with the Target outcome and only once with the Non-target outcome. Eye tracking data from multiple trials (e.g., Thorgrimsson et al., 2014, 2015) of the action segment may yield a more stable measure of participants' looking behavior. Furthermore, although we did measure the amount of data we lost from the eye tracker and set appropriate inclusion criteria based on the data loss, we did not have an accurate measure of the precision of the eye tracking data for infants, which could influence the looking behaviors to the specific AOIs (Oakes, 2010, 2012). Verifying the calibration by presenting objects at certain locations on the screen would allow us to better evaluate whether infants' gaze location is accurately approximated by the eye tracker (Oakes, 2012). Finally, as an exploratory analysis, we examined infants' and adults' changes in pupil diameter during the action segment. We found that participants' pupil diameter changed as the actions of the scene unfolded. However, the results were inconsistent with participants' changes in looking behavior and were not clearly interpretable. The results of pupil diameter analyses are included as supplementary material.

An important question for future research is whether infants' processing of communicative events shapes language and social abilities later in life. The ability to recognize the communicative function of speech without knowing its lexical content and to quickly process the event while it is occurring may be an early mechanism for detecting the meaning of novel words (Akhtar et al., 2001) and for acquiring knowledge from third-party communicative interactions (reviewed in Vouloumanos & Waxman, 2014). The degree to which early processing of communicative events predicts later language and
social abilities may also be valuable for identifying early difficulties in social and communicative skills, which are often characteristic of individuals with autism spectrum disorder (American Psychiatric Association, 2013). Consistent with this possibility, 6-month-olds who are later diagnosed with autism spectrum disorder attend less to social scenes overall than typical infants and especially attend less to the actor’s face and actions (Chawarska, Macari, & Shic, 2013).

Conclusion

By 12 months, infants, like adults, recognize that speech, but not non-speech, can communicate information to others, and they process the communicative event online as the event is unfolding. Infants and adults show many similarities in the way they process communicative events involving speech; however, differences in the magnitude and timing of their looking behaviors revealed that at times 12-month-olds process more slowly than adults. We found no evidence that infants or adults are making predictions about the outcome of a communicative event before the outcome is presented, although it is possible that participants could anticipate the outcome if they were given more time between the communicative event and its outcome. Even before knowing or saying many words, infants can already use their knowledge about the communicative function of speech to quickly and efficiently process a communicative event. These processing abilities may be a mechanism not only for learning language but also for acquiring knowledge from third-party communicative interactions.

Acknowledgments

This research was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under Award R01HD072018. We thank members of the NYU Infant Cognition and Communication Lab, the parents and infants who participated, and Patrick Shrout for his assistance with analyses.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.jecp.2018.04.011.

References
