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Abstract

An eyetracking version of the classic Shepard, Hovland, and Jenkins (1961) experiment was
conducted. Forty years of research has assumed that category learning often involves learning
to selectively attend to only those stimulus dimensions useful for classification. We confirmed
that participants learned to allocate their attention optimally. We also found that learners tend
to fixate all stimulus dimensions early in learning. This result obtained despite evidence that
participants were also testing one-dimensional rules during this period. Finally, the restriction
of eye movements to only relevant dimensions tended to occur only after errors were largely
(or completely) eliminated. We interpret these findings as consistent with multiple-systems the-
ories of learning which maximize information input in order to maximize the number of learn-
ing modules involved, and which focus solely on relevant information only after one module
has solved the learning problem.
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1. Introduction

Selective attention has played a prominent role in theories of categorization ever
since Roger Shepard�s influential work (Shepard, Hovland & Jenkins, 1961) demon-
strated that a simple stimulus generalization account of category learning is unten-
able. The stimulus generalization account took category learning to be a process
of simple associations between stimuli and category labels. This account predicted
that it should be easy for participants to associate stimuli that shared many features
with one category label, and difficult to associate such stimuli with different labels.
Unexpectedly, one important determiner of difficulty was the number of stimulus
dimensions needed for correct classification. It has been generally accepted that this
pattern of results is best understood in terms of learners optimally allocating their
selective attention to those dimensions diagnostic of category membership (Medin
& Schaffer, 1978; Nosofsky, 1984; Shepard et al., 1961).

Currently, selective attention is an integral component of all major categorization
theories. For example, in both exemplar models (Hampton, 1995; Medin & Schaffer,
1978; Nosofsky, 1986) and prototype models (Nosofsky, 1992; Smith & Minda,
1998), selective attention is formalized in terms of the influence, or weight, that dif-
ferent stimulus dimensions have on a classification decision. Rule-based models also
implicitly assume the operation of selective attention to those stimulus dimensions
referred to by the current hypothesis (i.e., rule) being tested (Smith, Patalano, &
Jonides, 1998).

Moreover, in more recent years, these theories have been extended to include the
mechanisms by which selective attention changes with learning. One prominent
example is Kruschke�s (1992) ALCOVE, a connectionist exemplar model that
changes attention weights as a function of error feedback. Another is Nosofsky, Pal-
meri, and McKinley�s (1994) rule-plus-exception (RULEX) model, which first per-
forms hypothesis (rule) testing on single dimensions, then on multi-dimensional
rules and exceptions to those rules if needed.

Despite its prominence in modern categorization theory, however, evidence for
the operation of selective attention has always amounted to demonstrations that
dimensions vary in their influence on explicit categorization judgments (or same-dif-
ferent judgments, Goldstone, 1994), but not on the operation of selective attention
per se (Lamberts, 1998). Accordingly, this study had two main goals. The first was
to determine if eyetracking data would support the claim that learners allocate their
attention to optimize classification performance. To this end, we replicated the Shep-
ard et al. (1961) category learning experiment with an eyetracker. Specifically, we
asked whether Shepard et al.�s claims regarding learners� reallocation of attention
to only those stimulus dimensions relevant to producing correct classification deci-
sions would be directly corroborated by eyetracking data.

To our knowledge, the current work is the first to apply eyetracking to the domain
of categorization research. At the outset then, one concern that must be addressed is
the interpretation of eye movements as a surrogate measure of attention during cat-
egory learning. It is of course well known that attention can dissociate from eye gaze
under certain circumstances (Posner, 1980). However, in many cases changes in
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attention are immediately followed by the corresponding eye movements (e.g., Kow-
ler, Anderson, Dosher, & Blaser, 1995), and there is evidence that attention and eye
movements are tightly coupled for all but the simplest stimuli (Deubel & Schneider,
1996). Not surprisingly then, eye tracking has proven to be an effective tool in many
areas of research, most notably of course reading (Ferreira & Clifton, 1986; Just &
Carpenter, 1984; Makie, Vonk, & Schriefers, 2002; Rayner, 1998; Tanenhaus, Spi-
vey-Knowlton, Eberhard, & Sedivy, 1995) but also language production (Griffin &
Bock, 2000; Meyer, Sleiderink, & Levelt, 1998), scene perception (Biederman, Mez-
zanotte, & Rabinowitz, 1982; Henderson, 1999; Loftus & Mackworth, 1978), prob-
lem solving (Grant & Spivey, 2003; Hegarty & Just, 1993), skill acquisition (Haider
& Frensch, 1999), and face perception (Althoff & Cohen, 1999), to name a few. In the
current study, we will take the presence of eye fixations to spatially separated stim-
ulus dimensions as a proxy measure of attention to those dimensions, and predict
that fixations to dimensions irrelevant to correct classification will cease as a result
of classification experience. An important feature of the category learning task is
the availability of an overt behavioral measure (the elimination of classification er-
rors) as a source of converging evidence about which aspects of stimuli are being at-
tended. Specifically, learning entails that a participant attend to those stimulus
dimensions needed to discriminate members of the categories. Thus, confirmation
that learners primarily attend to relevant dimensions will not only corroborate the
basic claim of Shepard et al.�s, it will also cross-validate the use of eyetracking as
an index of attention in category learning.

The second goal of our study was to use eyetracking data to determine whether
the manner in which attention changes during the course of learning was well de-
scribed by ALCOVE, RULEX, or either model. Of course, these models were not
specifically designed to account for eye movements. Nevertheless, eye movement
predictions for each can be derived if we assume, on the basis of the research re-
viewed above, that the mapping between selective attention and eye movements
is roughly one-to-one (an assumption we revisit later). For example, according to
ALCOVE, learners will generally start off attending to all stimulus dimensions
equally (or perhaps in a manner that reflects differences in their perceptual sal-
ience), and then gradually shift attention to only relevant dimensions as a result
of error feedback. In the experiment which follows, dimensions will be of roughly
equal salience, and thus the prediction we derive from ALCOVE is that learners
will initially spend an equal amount of time fixating each stimulus dimension. As
learning proceeds, fixations to irrelevant dimensions will gradually decrease until
they are eliminated altogether.

In contrast, a hypothesis-testing model like RULEX makes very different predic-
tions regarding how selective attention changes during learning. According to RU-
LEX, learners first search for a single-dimension rule that successfully
discriminates members of the two categories. Thus, our RULEX-derived prediction
is that learners will fixate single dimensions early in learning. When no single-dimen-
sion rule is found, learners will fixate multiple dimensions as they attempt to form
more complex rules (e.g., conjunctions, disjunctions, etc.), or to memorize exceptions
to an imperfect rule. That is, whereas the ALCOVE-derived predictions are that
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learners will initially fixate all dimensions and then gradually reduce the number fix-
ated to the minimum needed, the RULEX-derived predictions are that they will first
fixate one dimension, and then increase the number fixated as needed.

Once again, an important characteristic of the category learning task is the pres-
ence of an overt behavioral measure in the form of classification errors that can cor-
roborate any conclusions we reach regarding changes in selective attention on the
basis of eye movements. For example, one diagnostic feature of hypothesis-testing
models is the all-or-none learning (i.e., the sudden elimination of classification errors)
that obtains when a learner discovers a correct single-dimension rule (Bower & Trab-
asso, 1963). Thus, the RULEX-derived prediction is that the fixations to a single
dimension which are supposed to reflect rule application should be closely accompa-
nied by the elimination of classification errors when that dimension is one which can
be used to discriminate category members. Similarly, an important characteristic of
associationist learning models like ALCOVE is the gradual learning that obtains as a
result of the incremental adjustment of connection weights on the basis of error feed-
back.1 Thus, the ALCOVE-derived prediction is that a gradual shift of eye move-
ments should be accompanied by a gradual decrease of errors. More generally, a
close correspondence between error reduction and changes in eye movements will
not only provide evidence for one or the other model of learning, it would also val-
idate eyetracking as an effective measure of the changes in selective attention during
category learning.

Although we believe our predictions provide a useful initial framework for the
evaluation of eye movements in category learning, we acknowledge at the outset
that there are a number of reasons to expect something other than a simple
one-to-one mapping between eye movements and the construct of ‘‘selective atten-
tion’’ as operationalized by categorization models. One reason of course is that eye
fixations may be influenced by low-level perceptual characteristics of stimuli which
do not necessarily have any bearing on how those items are classified. Another is
that participants may attempt to learn more about the categories than just how to
classify correctly (e.g., they might try to learn how to predict features given a cat-
egory label rather than just vice versa). Because effects such as these are not part of
category learning per se, they are beyond the purview of models such as ALCOVE
or RULEX as currently formulated. Additionally, it is important to note that eye
movements most directly measure a learner�s selective attention to spatial locations

(on a computer screen), a construct which is theoretically distinct from their
selective attention to stimulus dimensions (see, e.g., Logan, 2004, for a discussion).
1 Throughout this article, we emphasize the traditional distinction between hypothesis-testing models of
category learning versus associationist, or similarity-based, accounts, with RULEX serving as an exemplar
of the former and ALCOVE an exemplar of the latter. There are, however, more recent models which blur
this distinction between these two classes of models. For example, Kruschke and Johansen (1999) has
proposed an extenstion to ALCOVE called RASHNL which incorporates a mechanism by which learners
can rapidly shift attention among stimulus dimensions. As a result, RASHNL is likely to be able to exhibit
both all-or-none learning and a sudden change in eye movements to relevant stimulus dimensions, and do
so despite its associationist ancestry.
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Nevertheless, the application of eyetracking to category learning is new, and thus
we believe that for now our (perhaps overly simplistic) predictions provide a useful
initial framework for the evaluation of eye movements in the Shepard et al. (1961)
category structures. In the general discussion, we will reevaluate the relationship
between eye movements and selective attention to stimulus dimensions in light
of our experimental results.
2. The Shepard et al. (1961) study

Shepard et al. (1961) constructed stimuli with three binary-valued dimensions,
resulting in eight stimuli split into two categories. There were six unique divisions
of stimuli into categories, four of which are shown in Fig. 1A. Here, the dimensions
have been arbitrarily instantiated by shape, color, and size.

Type I is the most basic category structure, requiring information from a single
dimension for classification (the shape dimension in Fig. 1A). The Type II structure
Fig. 1. (A) Category structures Type I, II, IV, and VI from Shepard et al. (1961), Experiment II. (B) The
Type I stimuli used in Shepard et al. (1961), Experiment I.



Fig. 2. Example of stimulus presentation.
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is an exclusive-or problem along two relevant dimensions (size and shape in Fig. 1A).
Type IV can be described as single-dimension-plus-exception structure (as can Types
III and V, not shown in Fig. 1A), in which all 3 dimensions are relevant although not
equally so. Type IV can also be characterized with a ‘‘2 out of 3’’ decision rule in
which all dimensions are equally relevant. Finally, in the Type VI structure, all 3
dimensions are equally relevant and categorizers must essentially memorize the cat-
egory label for every exemplar.2 Shepard et al.�s central finding was that the ordering
among the category structures from least to most difficult was Type I < II < IV < VI
(also see Love, 2002; Nosofsky, Gluck, Palmeri, McKinley, & Glauthier, 1994). Be-
cause this ordering mirrors the number of dimensions for correct classification, it was
taken as evidence for selective attention in category learning. (The greater difficulty
of Type VI vs. IV was taken as reflecting VI�s lower between-category and greater
within-category similarity, consistent with Shepard et al.�s original predictions.)

We tested participants wearing an eyetracker on the four category structures
shown in Fig. 1. However, because eye movement analysis requires the dimensions
of stimuli to be separated in space, our stimuli were in fact analogous to those used
in Experiment I of Shepard et al. (1961). An example of the stimuli used in that
experiment is presented in Fig. 1B. For example, a Type I problem could be con-
structed from the stimuli in Fig. 1B on the basis of the bottom left ‘‘dimension’’:
items with a candlestick would form one category and those with a light bulb would
form the other. However, to avoid the perceptual complexity of the features in Fig.
1B, in our experiment the binary dimensions were realized instead by a pair of char-
acters ($ and ¢, ? and !, and x and o). An example of a single stimulus used in the
current experiment is presented in Fig. 2.
2 Although Shepard et al. (1961) noted that the Type VI structure could also be solved by comparing the
current exemplar to the previous one and responding with the same category label only if the two
exemplars differ in an even number of features (a strategy that still requires one to attend to all 3
dimensions). We thank John Kruschke for pointing this solution out to us.
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Our first question was whether, as predicted by current theories, participants
would limit their attention (measured by eye movements) to only those stimulus
dimensions needed to classify each structure: 1, 2, 3, and 3 dimensions. Our second
question was whether the changes in eye movements during learning would support a
gradual or rule-based learning account. According to ALCOVE, participants should
begin by examining all dimensions for Types I, II, IV, and VI, respectively and grad-
ually reduce the dimensions they fixate to the minimum (to one for Type I and two
for Type II). According to RULEX, participants should begin by examining 1
dimension and increase the dimensions they fixate as needed (to two for Type II
and three for Types IV and VI).
3. Method

3.1. Participants

A total of 72 New York University undergraduates were randomly assigned to
one of the four category structures.

3.2. Materials

The characters which composed the stimuli ($ and ¢, ? and !, and x and o) were
presented in a light gray (RGB: 128, 128, 128) and within �1/2 by �1 degree of vi-
sual angle. The three symbols were situated �20� apart on the CRT at �12� eccen-
tricity, forming an equilateral triangle. An example stimulus is presented in Fig. 2.
The assignment of physical dimensions and location to the abstract category struc-
ture was counterbalanced.

Our SMI Eyelink eyetracking system corrected for drift between trials, recording
a single eye.

3.3. Procedure

Each participant was first fitted and calibrated to the eyetracker. Each sub-
sequent learning trial began with a drift correction in which the participant fix-
ated on a small circle that appeared at the center of the CRT allowing the
eyetracker to make small calibration adjustments that compensate for slight
movements (drifts) of the eyetracker on the participant�s head. Following drift
correction, one of the eight exemplars was presented on the screen. Participants
classified the exemplar as belonging to either a ‘‘red’’ or ‘‘green’’ category by
pressing colored buttons on a button box (assignment of categories to the red
or green labels was balanced). Exemplars remained visible for 4 s after auditory
feedback. Exemplars were presented randomly in blocks of 8. The experiment
ended after four consecutive errorless blocks or after a 28 block maximum.
Participants were informed how close they were to this goal after each
block.
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3.4. Eyetracking dependent variables

To derive eyetracking measures, we defined three rectangular areas of interest
(AOIs) that encompassed the symbol dimensions on the CRT (Fig. 2). All fixations
outside of those AOIs were discarded, as were any fixations that occurred after the
participant pushed the response button. Based on the remaining fixations three mea-
sures for each learning trial were computed. The first is the number of dimensions fix-

ated (ranging between 0 and 3). The second, proportion fixation time (ranging from 0
to 1), is the time spent fixating each dimension divided by the total time spent fixat-
ing all 3 dimensions. It is intended to provide information regarding which dimen-
sions participants found most important. Finally, the relative priority (ranging
from 0 to 1) captures the ordering of fixations. To compute this measure we weighed
each fixation on a dimension according to the terms in the arithmetic sequence,
{n,n � 1, . . ., 1}, of n ordered fixations such that the first fixation of the trial was gi-
ven a weight of n, the second fixation was given a weight of n � 1, and the last fix-
ation was given a weight of 1. Thus, dimensions receive a greater relative priority
score the earlier in the trial they are fixated.
4. Results

We first set out to establish that we replicated the basic ordering of problem dif-
ficulty found by Shepard et al. (1961). The number of participants out of 18 that
reached the learning criterion of four perfect blocks in a row was 18, 18, 16, and
10 for Types I, II, IV, and VI, respectively. We also analyzed the number of blocks
to criterion (assuming, conservatively, that nonlearners would have reached perfect
performance by block 29). The average number of blocks to criterion was 7.1, 14.1,
18.1, and 22.9 for Types I, II, IV, and VI, respectively; F (3,68) = 24.8, p < .01. All
pairwise comparisons (I vs. II, II vs. IV, and IV vs. VI) were significant (p < .05). Fi-
nally, the total number of errors committed for the four problems types was 8.2,
31.2, 36.9, and 70.6; F (3,68) = 23.4, p < .01 (all pairwise comparisons p < .05, except
the Type II vs. IV contrast, p < .15). Thus, this experiment indeed replicated the ba-
sic problem type ordering: Type I < II < IV < VI.

Our primary goal, and a first for the categorization field, was to determine if selec-
tive attention can be measured directly from eye movements. Fig. 3 presents the aver-
age number of dimensions fixated in each category structure in each block for those
participants who reached the learning criterion. For learners who reached criterion
before the 28th block, we assumed their eye movement data for the remaining blocks
would have been identical to the mean of their last actual four blocks.

Fig. 3 illustrates that by the end of training learners in this experiment indeed allo-
cated their attention (as measured by eye movements) to only those stimulus dimen-
sions needed to solve the classification problem. By the end of learning, the Type I
group was examining 1 dimension; only one of the 18 Type I participants did not
restrict eye movements to the one relevant dimension. Similarly, the Type II
group was attending to 2 dimensions; only 2 of the 18 participants examined all 3



Fig. 3. The number of dimensions fixated as a function of training block and category structure.
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dimensions. Finally, all Type IV and VI participants generally fixated 3 dimensions.
These results provide direct evidence that the acquisition of these category structures
involves selective attention to only those dimensions needed for judging category
membership.

A second goal of the present study concerns the process by which participants
learned to attend selectively. We considered two possibilities. The first, based on AL-
COVE, was that attention would first be allocated to all dimensions and then shift
gradually to the relevant dimensions. The second, based on RULEX, was that atten-
tion would first be allocated to a single dimension (as simple 1D rules were being
tested) and then shift to include more dimensions as needed. As Fig. 3 indicates,
the average group data support an ALCOVE-like gradual learning view of selective
attention. But Fig. 3 is a result of averaging over participants. Does gradual learning
hold for individuals? To answer this question we examined the pattern of eye move-
ments for each participant individually, starting with those that solved the Type I
problem.

4.1. Type I results

The Type I problem is ideal for the purpose of examining the role of selective
attention in category learning, because it is associated with the greatest reduction
in the number of dimensions fixated—and hence the greatest change in selective
attention—during learning. Although at a detailed level there was of course a great
deal of variety across participants, we found that the patterns of eye movements of
11 of the 18 Type I participants were qualitatively similar. This pattern is exemplified
by the eyetracking data of the one Type I participant shown in Figs. 4A–C.



Fig. 4. Performance on the 56 trials of one Type I learner. (A) Number of dimensions fixated. (B)
Proportion fixation time. (C) Relative priority. (D) Errors.
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Fig. 4A presents the number of stimulus dimensions examined by this individual
on each trial. Fig. 4A indicates that in the first 21 trials this participant typically fix-
ated all 3 dimensions (except 2 dimensions on 6 trials, and 1 dimension on 1 trial).
However, starting on trial 22, and continuing for the rest of the experiment, only 1
dimension was fixated. Rather than the gradual shift of attention from �2.5 dimen-
sions to �1 dimension suggested by the Type I group data (Fig. 3), this participant
exhibits a sudden shift of eye movements to a single dimension.

Fig. 4B presents the proportion of time the participant fixated the one relevant
dimension. A trial in which all 3 dimensions are examined equally results in propor-
tions of 0.33; one in which only the relevant dimension is examined results in a pro-
portion of 1.00. The figure indicates that in the first 21 trials, the participant did not
spend appreciably more time fixating the relevant dimension than the other 2 dimen-
sions. Starting with trial 22, however, only the relevant dimension was fixated.

Finally, Fig. 4C presents the relative priority of the relevant dimension. If the rel-
evant dimension is fixated no earlier or later than other dimensions then its relative
priority score is 0.33. This score increases if the participant fixates the relevant
dimension before the other dimensions. Fig. 4C indicates that until trial 21, the par-
ticipant showed no preference for fixating the relevant dimension any earlier than
other dimensions. After trial 21, the relative priority score becomes 1.00 because
at that point it is the first and only dimension fixated.

Taken together, Figs. 4A–C suggest that this participant exhibits none of the signs
of gradual learning suggested by the Type I group data. Up until trial 21, the partic-
ipant typically examines all 3 dimensions, spends about as much time examining the
relevant dimension as the irrelevant ones, and shows no preference for looking at the
relevant one first. Starting with trial 22 and continuing until the learning criterion is
reached on trial 56, only the relevant dimension is fixated. The suddenness of learn-
ing suggested by these results is directly confirmed by the pattern of errors (Fig. 4D).
Whereas during the first 20 trials the participant shows no indication of a gradually
improving error rate (e.g., 5 errors committed in trials 1–10 followed by 7 in trials
11–20), errors cease entirely after trial 20.

To characterize the changes shown in Fig. 4 quantitatively, we fit the following
sigmoid function to the participant�s four dependent variables:

y ¼ initialþ diff =ð1þ expð�mðt � bÞÞÞ;
where y is the dependent variable being fit, initial is the initial asymptote of the sig-
moid, diff is the magnitude of the change of the sigmoid from its initial asymptote to
its final asymptote, m is a measure of whether that change occurs slowly or rapidly, b
is the inflection point of the curve, and t is trial number.3 For the error fit, we set
initial = 0.50 and diff = �0.50 reflecting initial guessing and eventual learning.

The results of these fits are shown superimposed on the empirical data in Fig. 4.
For example, the parameters for the fit to the number of dimensions fixated (Fig. 4A)
3 In these fits, parameter m was constrained to be P0.026, and 65.89. When m = 0.026, 95% of the
change in the sigmoid from its initial to final asymptote occurs in 224 trials (the maximum length of the
experiment); when m = 5.89, 95% of the change occurs in 1 trial.
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was initial = 2.65, diff = �1.65, m = 5.89, and b = 21.1. These parameter estimates
indicate that this participant began by fixating 2.65 dimensions and ended up fixating
2.65 � 1.65 = 1 dimension; the transition from 2.65 to 1 occurred rapidly (m = 5.89)
at trial 21. The fits of the sigmoid functions in Figs. 4B–D also confirm the sudden-
ness of the transition on all three measures. Moreover, the value of the b parameter
in all four fits confirms that the transitions occurred within a trial or two of one an-
other (b = 21.1, 20.0, 21.0, 19.7 for number of dimensions, relevant fixation time, rel-
ative priority, and errors, respectively). Interestingly, the reduction in number of
errors begins to occur a trial or two earlier than the change in eye movements.

This fitting procedure was carried out for all 18 Type I participants. To accommo-
date those instances in which a dependent measure showed no change over the
course of the experimental session, we also fit an intercept model that consisted of
a single parameter representing the average value of the measure over all trials.
Either the sigmoid or the intercept model was then chosen as the best fitting model
according to a measure (root means square error, RMSE) that took into account the
different number of parameters in the two models (4 vs. 1).

We first present the fits to the number of dimensions fixated for each Type I par-
ticipant. To make these fits comparable, the fits were aligned with one another by
translating each participant�s trial number so that 0 corresponded to the value of
the b parameter, that is, the inflection point of the sigmoid. These translated curves
are shown in Fig. 5A for each Type I participant. Note that these fits are analogous
to ‘‘backward learning curves,’’ that are constructed from empirical learning data
(with the difference that Fig. 5A displays the sigmoid fits to the learning data rather
than the data itself). Fig. 5A shows that most Type I participants began by fixating
between 2.5 and 3 dimensions, and all but one ended fixating the single relevant
dimension. Moreover, for all but three participants, this reduction in the number
of dimensions took place within a few trials. (We discuss the three exceptions labeled
‘‘1D rule testers’’ and ‘‘memorizer’’ below.)

The average sigmoid in the Type I condition was calculated by averaging the
parameters of the 18 sigmoids.4 These averaged parameters are presented in Table
1, and the average sigmoid is shown superimposed on the individual curves in Fig.
5A. The average sigmoid confirms the sudden restriction of eye movements to the
single relevant dimension. The typical participant began by fixating 2.61 dimensions,
ended fixating 2.61 � 1.45 = 1.16 dimensions, and made the transition at about trial
19. Importantly, the average value of the m parameter (1.43) suggests that this tran-
sition from 2.61 to 1.16 dimensions occurred abruptly for most Type I participants
(when m = 1.43, 90% of the change in the sigmoid occurs in just three trials). Table 1
also presents the average parameters of the sigmoid fits to our two other eyetracking
4 For purposes of computing the averages in Table 1, those fits for which the intercept model was the
best fitting model were assigned initial = the average, diff = 0, and m = 0.026. No value for the b

parameter was assigned for these fits, which therefore have no influence on the average value of the b

parameters in Table 1. Note that because of the m parameter�s nonnormal distribution, its average was
calculated by taking the natural logarithm of the individual ms, averaging ln(m) over participants, and
then exponentiating this average.



Fig. 5. Backward learning curves for the 18 Type I participants. (A) Number of dimensions fixated. (B)
Errors. Performance of the average Type I participant is superimposed on the individual curves.
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measures, the proportion time spent fixating the relevant dimension and its relative
priority. These fits corroborate a sudden shift to the single relevant dimension occur-
ring around trial 19.

We also computed backward learning curves from the individual participants� er-
ror sigmoids. These curves are presented in Fig. 5B and show that, with a few excep-
tions, most Type I participants exhibited a sudden reduction in their error rate from
50 to 0%. The parameters of the average error sigmoid—which is superimposed on
the individual curves in Fig. 5B—are presented in Table 1. The average value of m
for the error fits (2.28) indicates that the reduction in error rates from 50 to 0% oc-
curred in about two trials.

These findings indicate that the sudden reduction in number of dimensions fixated
and errors exhibited by the individual in Fig. 4 holds for most members of the Type I
group. However, although the average parameter values presented in Table 1 pro-
vide a coarse summary of performance in the Type I condition, Figs. 5A and B also
indicate that there were some exceptions to the general pattern. To characterize this
variability, we identified subgroups, or clusters, of Type I participants that exhibited
distinct performance profiles. We found five clusters, one of which included the per-
formance of the majority of Type I participants (Fig. 6) and four others which were



Fig. 6. The modal cluster of Type I learners.

Table 1
Average parameter values of the sigmoid fits to each dependent variable for each category type

Category structure Dependent variable

No. of dimensions Proportion time Relative priority Error rate

Type I
Initial 2.61 0.34 0.39 0.50
Diff �1.45 0.60 0.53 �0.50
m 1.43 1.34 2.11 2.28
b 18.7 19.2 19.2 14.5

Type II
Initial 2.71 0.65 0.72 0.50
Diff �0.67 0.30 0.21 �0.50
m 0.77 0.38 0.34 0.51
b 60.1 56.0 61.0 50.0

Type IV
Initial 2.31 0.50
Diff 0.58 �0.50
m 0.11 0.12
b 24.4 59.5

Type VI
Initial 2.71 0.50
Diff 0.21 �0.50
m 0.13 0.23
b 14.7 85.8
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exceptions to the majority trend (Figs. 7A–D). Each panel in these figures character-
izes how the number of dimensions fixated, proportion fixation time, relative prior-
ity, and errors change over the course of the experiment.

The learning profile presented in Fig. 6 represents the modal performance in the
Type I condition, accounting for 11 participants (including the one in Fig. 4). Fig. 6
illustrates the sudden elimination of errors and restriction of eye movements to the



Fig. 7. Four clusters of atypical Type I learners.
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single relevant dimension. Moreover, these effects all occur within a few trials of one
another: before trial 11, the modal Type I participant�s chance of making an error is
close to 50%, the number of dimensions fixated is close to three, the proportion of
time spent fixating the relevant dimension is about one-third, and the relevant
dimension is no more likely to be fixated before the other dimensions. By trial 17,
errors have ceased and only the relevant dimension is being fixated. Importantly,
Fig. 6 indicates that the sudden restriction of eye movements to the single relevant
dimension occurs on average about four trials after errors have ceased. These results
suggest that participants focused exclusively on the single relevant dimension only
after the category learning problem was already solved. Indeed, a within-subject t
test confirmed that the inflection of the sigmoid for the error fit (b = 12.2) occurred
significantly earlier than that for the number of dimensions fixated (b = 16.1),
t (10) = 2.65, p < .05, for these 11 participants.

Figs. 7A–D present the exceptions to the modal profile shown in Fig. 6. In con-
trast to the all-or-none learning displayed by the modal group, the cluster of four
individuals in Fig. 7A exhibited a more gradual reduction in error rates: the average
error sigmoid for this group underwent a 90% change in an average of 14.6 trials
(m = 0.30). In this regard, the performance of these individuals accord more with
the predictions of ALCOVE in which error reduction occurs gradually. These indi-
viduals also eventually limited their eye movements to the single relevant dimension.
Just as was the case for the all-or-none learners however, this shift in eye fixations
tended to follow rather than precede the reduction in errors: by the time eye fixations
begin to show a preference for the single relevant dimension (around trial 25), the
average error rate has dropped to almost 0.10.

Figs. 7B and C depict the performance of the two individuals we referred to as the
one-dimensional rule testers in Fig. 5A, because they generally examined only 1
dimension on each trial of the experimental session. The participant presented in
Fig. 7B fixated just the relevant dimension on most trials (but occasionally fixated
2 or 3 dimensions, and thus had an average of 1.4 dimensions fixated). Not surpris-
ingly, this person solved the Type I problem almost immediately (committing only
one error on trial 1) and completed the experiment by trial 40. In contrast, the par-
ticipant in Fig. 7C began fixating one of the irrelevant dimensions, but then, after
committing 7 errors in the first 9 trials, switched to examining only the relevant
dimension on trial 10. After this only one additional error was committed on trial
12, and the four-block learning criterion was reached on trial 48.

Finally, the participant in Fig. 7D corresponds to the one we have labeled the
memorizer in Fig. 5, because he or she fixated all 3 dimensions the entire session.
We speculate that this person systematically memorized all eight stimuli. Consistent
with this interpretation is that fact that this individual took 10 blocks (80 trials) to
learn the Type I problem, as compared to the group average of 7.1 blocks.

In summary, most Type I participants exhibited the all-or-none reduction in er-
rors characteristic of hypothesis-testing accounts of learning. However, only two
participants exhibited the pattern of eye movements we derived from the RULEX
model, namely, fixating single dimensions while testing simple one-dimensional rules.
Instead, most participants examined all 3 dimensions early in learning, and only



B. Rehder, A.B. Hoffman / Cognitive Psychology 51 (2005) 1–41 17
restricted their eye movements to the single relevant dimension several trials after
classification errors ceased. We also observed a substantial minority of participants
(5 of 18) that exhibited gradual rather than all-none-learning. Nevertheless, 4 of
these 5 participants performed like the modal group in restricting their eye move-
ments to the relevant dimensions (albeit only after classification errors had largely
been eliminated).

4.2. Type II results

Like the Type I category structure, the Type II structure allows an examination of
how people learn to attend selectively to only those dimensions relevant to discrim-
inating the categories, in this case, the 2 out of 3 dimensions on which an exclusive-or
rule is formed. For each Type II participant, we carried out the same sigmoid fitting
procedure on the four dependent measures used to analyze the Type I condition.

We again start by presenting the results of one participant that exemplifies the
modal pattern in the Type II condition. Fig. 8A presents the number of dimensions
fixated on each of this participant�s 80 trials. This figure indicates that in trials 2–33
all 3 dimensions were fixated. In this regard, this individual behaves like the typical
Type I participant by examining all stimulus dimensions at the beginning of the
experimental session. However, during trials 34–38 the participant alternates be-
tween fixating 2 and 3 dimensions, and then, starting on trial 39 and continuing until
the final trial 80, generally examines only the 2 dimensions relevant to solving the
Type II problem. On the one hand, as was the case for the Type I results, the reduc-
tion in the number of dimensions occurred much more abruptly than implied by the
Type II group data presented in Fig. 3. On the other hand, the restriction of eye
movements to the relevant dimensions occurs more gradually than it did in the Type
I condition. This difference in the rate of change in eye movements is reflected in the
value of the m parameter for this participant�s Fig. 8A sigmoid fit (0.64, correspond-
ing to a 90% change occurring in 6.9 trials) versus the average value of m found in
the Type I condition (1.43, 3.1 trials).

The gradual change in eye movements is more apparent when one examines the
sum of the proportion of time spent fixating the two relevant dimensions (Fig. 8B)
and the sum of the priority score for those dimensions (Fig. 8C). These measures
indicate that the shift to the relevant dimensions in fact began as early as trial 27.
That is, even though the participant examines all three stimulus dimensions on trials
27–33, the two relevant dimensions begin to be examined earlier and for a greater
proportion of time during these trials. According to both of these measures, the shift
of eye movements to the two relevant dimensions (m = 0.41 and 0.39, respectively)
occurs over 11 trials (27–38).

Finally, the restriction of eye movements to the relevant dimensions during trials
27–38 is corroborated by a decrease in the number of errors committed during this
same period (Fig. 8D). The error rate for this participant is 50% until around trial 27,
after which it gradually decreases until the final error is made on trial 41. Taken to-
gether, all four dependent variables presented in Fig. 8 suggest that learning for this
participant occurred more gradually as compared to the all-or-none learning seen in



Fig. 8. Performance on the 80 trials of one Type II learner. (A) Number of dimensions fixated. (B)
Proportion fixation time. (C) Relative priority. (D) Errors.
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the Type I condition. This performance is more consistent with an associationist
model of learning such as ALCOVE rather than a hypothesis-testing model such
as RULEX.

Analogous with the Type I analysis, performance of all 18 Type II participants
was examined by constructing backward learning curves from the sigmoids for the
number of dimensions examined (Fig. 9A) and errors (Fig. 9B). Fig. 9A shows that
most Type II participants began by fixating between 2.5 and 3 dimensions and ended
by fixating 2 dimensions. That is, just as was the case in the Type I condition, the
Type II participants ended up fixating only the dimensions needed to solve the learn-
ing problem (in this case 2 dimensions). One important exception, however, is the
participant we have labeled in Fig. 9A as the peripheral vision user. This learner
showed a gradual reduction in the number of dimensions fixated so that, by the
end of the experimental session, he or she was only fixating one stimulus dimension,
despite the fact that correct responding required acquiring information from 2
dimensions. Apparently, the information from one of the two stimulus dimensions
was acquired by use of peripheral vision, that is, without any fixations to that dimen-
sion. Of the 62 individuals in the current study who learned their assigned category
structure, this is the only one whose acquisition of information from the stimulus
Fig. 9. Backward learning curves for the 18 Type II participants. (A) Number of dimensions fixated. (B)
Errors. Performance of the average Type II participant is superimposed on the individual curves.



20 B. Rehder, A.B. Hoffman / Cognitive Psychology 51 (2005) 1–41
display was not accompanied by eye fixations. Because this participant�s eyetracking
data were therefore not a reliable measure of their use of stimulus information, they
were omitted from the subsequent analyses.

The parameter values for the sigmoid were averaged over the remaining 17 Type
II participants, and are presented in Table 1. Table 1 confirms that many of the per-
formance characteristics exhibited by the individual in Fig. 8 also hold at the group
level. First, like the Type I group, the average Type II participant generally fixated
all (2.71) stimulus dimensions early in learning, but by the end of learning was fixat-
ing only those dimensions needed to solve the learning problem (2.71 � 0.67 = 2.04
dimensions). Second, comparison of the average m parameter in the Type I and II
conditions confirms the more gradual learning that occurred in the latter condition
according to all four measures: number of dimensions fixated (m = 0.77 vs. 1.43 in
the Type I condition, or 7.6 vs. 4.1 trials), proportion fixation (m = 0.38 vs. 1.34
or 11.6 vs. 3.3 trials), relative priority (m = 0.34 vs. 2.11, or 12.9 vs. 2.1 trials),
and errors (m = 0.51 vs. 2.28, or 8.6 vs. 1.9 trials). T tests confirmed that the (loga-
rithm) of the m parameter in the two conditions were statistically different from one
another (ps < .05) for all dependent measures except for the number of dimensions
fixated (p > .15). Finally, as expected given the greater number of blocks required
for Type II learning, the inflection points of the sigmoids (the b parameter) occurred
considerably later for the average Type II vs. Type I participant (around trial 60 vs.
19, all ps < .0001).

Although the average Type II parameter values provide an overall summary of
performance in that condition, the backward learning curves presented in Fig. 9 indi-
cate that there was a substantial variability over participants. Thus, as we did in the
Type I condition, we identified distinct clusters of performance, one of which corre-
sponded to the majority of Type II participants (Fig. 10) and three others which were
exceptions to this majority trend (Figs. 11A–C).

The learning profile in Fig. 10 represents the modal performance in the Type II
condition, accounting for 9 participants (including the one in Fig. 8). Because 90%
Fig. 10. The modal cluster of Type II learners.



Fig. 11. Three clusters of atypical Type II learners.
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of the reduction in the number of errors in this group occurred in �19 trials (trials
45–64, m = 0.23), participants in this cluster exhibit gradual learning. Moreover, this
reduction in errors is accompanied by a shift in eye movements to the two relevant
dimensions over the course of these �19 trials. Although the number of dimensions
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fixated drops fairly suddenly around trial 63, the two more sensitive eyetracking
measures (proportion time and relative priority) indicate that the shift to the relevant
dimensions begins as early as trial 56, and takes 8 or more trials to complete. Thus,
the performance of these individuals generally accords with the predictions of AL-
COVE in which error reduction and attention shifts are gradual and co-occur. Note
however that, just as was the case for most Type I learners, eye fixations start to
change only after errors had begun to drop: By the time eye fixations begin to show
a preference for the two relevant dimensions on trial 56, the average error rate was
already 0.22.

Fig. 11 presents exceptions to the dominant profiles shown in Fig. 10. In contrast
to modal group in Fig. 10 who exhibited gradual learning, the group of four individ-
uals in Fig. 11A can be characterized as all-or-none learners, because, according to
the sigmoid fits to their error data, their error rate dropped from 50 to 0% in a single
trial. Note however, that whereas in Fig. 11A errors are eliminated by trial 41, the
shift in eye movements to the two relevant dimensions is not complete for another
16 trials. As was the case for the modal Type I all-or-none learners, the shift in
eye movements occurs only after the learning problem is already solved.

Fig. 11B depicts two participants who displayed gradual learning like those in the
modal group, but without any shift in eye movements to the two relevant dimen-
sions. Just as was the case for the single Type I participant who consistently exam-
ined all 3 dimensions, we speculate that these two individuals systematically
memorized each of the eight stimuli. Consistent with this interpretation is the espe-
cially slow decrease in errors exhibited by these participants (average m = 0.05, or
90% change in 88 trials) as compared to those in Fig. 10 (average m = 0.17, or 26
trials), as well as the greater average number of blocks taken to reach the learning
criterion by the former group (17.5 vs. 13.7).

Finally, the two individuals in Fig. 11C are those we have labeled two-dimensional

rule testers in Fig. 9. These learners only examined 2 dimensions during the experi-
mental session, and these turned out to be the 2 dimensions needed to learn the
exclusive-or rule. Just as we did for the two 1-dimensional rule testers in the Type
I condition, we speculate that these individuals learned via explicit hypothesis testing
in which errors ceased when the correct exclusive-or rule was discovered.

In summary, most Type II learners exhibited the gradual reduction in errors char-
acteristic of associationist theories of learning, although a sizable minority (6 of 17)
exhibited all-or-none learning. In addition, although four participants never showed
any shift to the relevant dimensions (because two consistently fixated 2 dimensions
and two others always fixated three), most Type II participants exhibited a shift in
eye movements to the two relevant dimensions that was closely synchronized with
(albeit later than) the reduction in errors. Given its theoretical importance, we sum-
marize the close relationship between shifts in eye movements and error reduction in
both the Type I and Type II conditions in Fig. 12. Fig. 12 plots the fitted b param-
eters (the inflection point of the sigmoid curve) for each participant�s number of
dimensions fixated and error data for those participants that exhibited a shift in
eye movements. As the figure illustrates, shifts in eye movements were highly corre-
lated with error reduction (r = .96). In addition, the fact that most data points fall



Fig. 12. Relationship between changes in eye fixations and changes in error rates.
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above the diagonal emphasizes that shifts in eye movements tended to follow, rather
than precede, the elimination of errors.

The final issue we consider in our presentation of the Type II results concerns the
ordering of the fixations to the two relevant dimensions. Although current models of
categorization do not generally make predictions regarding the order in which infor-
mation from stimulus dimensions is acquired, we asked whether the Type II partic-
ipants exhibited a consistent scan path, that is, a consistent order in which stimulus
dimensions were fixated. To answer this question, we first computed the average rel-
ative priority for each of the three stimulus dimensions during the last four error-free
blocks for each Type II participant. On the basis of these averages, the 3 dimensions
were then designated as either high, medium, or low priority, indicating whether they
tended to be fixated earlier or later in the trial. Finally, we divided each trial into
50 ms bins, and in each bin tabulated whether the high, medium, and low priority
dimensions were fixated. The result of averaging these tabulations over all Type II
trials is presented in Fig. 13B (for purposes of comparison the corresponding results
from Type I are presented in Fig. 13A). If, at the end of Type II learning, the two
relevant dimensions were being examined in a random order, we would expect that
the two histograms for high and medium priority dimensions to be indistinguishable.
In contrast, Fig. 13B indicates a clear separation between these two histograms. This
result suggests that most Type II participants tended to utilize a consistent scan path:
one dimension tended to be fixated in the early parts of the trial, whereas the other
was examined in the latter parts.

4.3. Types IV and VI results

In this final section, we present the results from the two category structures which
remain, Types IV and VI. Unlike Types I and II, these structures require learners to



Fig. 13. Fixations as a function of elapsed trial time for the highest, medium, and lowest priority
dimensions. (A) Type I condition. (B) Type II condition.
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attend to all three stimulus dimensions to successfully discriminate the two catego-
ries. Type IV can be construed either as a single-dimension-plus-exception structure,
or a linearly separable problem in which all 3 dimensions have equal weight. For
example, Type IV can be solved with a 2-out-of-3 rule in which an exemplar is con-
sidered a category member if 2 out of 3 dimension values favor that category. The
Type VI structure, in contrast, essentially requires learners to memorize the category
membership of each exemplar.

We used our sigmoid fitting procedure to analyze the number of dimensions fix-
ated for those Type IV and VI participants who solved the category learning prob-
lems (15 for Type IV and 10 for Type VI). Backward learning curves for these Type
IV and VI learners are presented in Figs. 14A and 15A, respectively. These figures
illustrate that participants began the experimental session by examining between
2.5 and 3 stimulus dimensions, just like those in the Type I and II conditions. As ex-
pected given these category structures, all learners were fixating all 3 dimensions by
the end of learning. The average parameter values of the sigmoid fits to the number



Fig. 14. Backward learning curves for the 15 Type IV participants who reached the learning criterion. (A)
Number of dimensions fixated. (B) Errors. Performance of the average Type IV participant is
superimposed on the individual curves.
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of dimensions fixated (Table 1) confirms that the average Types IV and VI learner
fixated all stimulus dimensions early in learning (2.44 and 2.71, respectively), and
were fixating all 3 dimensions by the end of learning (2.85 and 2.91). (Because all
3 dimensions are equally relevant in the Type IV and VI category structures, we
do not define the proportion fixation and relative priority measures for the relevant
dimensions in these conditions.)

Figs. 14B and 15B present backward learning curves for the error sigmoids in the
Type IV and VI conditions, respectively. These figures indicate how most partici-
pants in these conditions exhibited gradual learning. On the one hand, the average
values of the m parameter for the error fits (Table 1) indicate that learning occurred
more abruptly than implied by the group level data presented in Fig. 3. The average
m of 0.11 in the Type IV condition corresponds to a 90% reduction in errors occur-
ring in 40 trials; an average m of 0.23 in the Type VI condition corresponds to a 90%
reduction occurring in 19 trials. On the other hand, Figs. 14B and 15B indicate that
learning occurred more gradually than in either the Type I (1.9 trials) or Type II
(8.6 trials) conditions. In fact, the m parameter in the Type IV condition differed



Fig. 15. Backward learning curves for the 15 Type VI participants who reached the learning criterion. (A)
Number of dimensions fixated. (B) Errors. Performance of the average Type VI participant is
superimposed on the individual curves.
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significantly from that in Type I (p < .0001) and Type II (p < .05) conditions; m in
the Type VI condition differed significantly from m in the Type I condition
(p < .0001) although not the Type II condition (p > .20).

Once again, we examined individual Type IV and VI participants to identify dis-
tinct clusters of performance. In fact, the pattern of performance represented by
average parameters values in Table 1 were manifested by the large majority of learn-
ers in both the Type IV (13 of 15) and the Type VI (8 of 10) conditions. The perfor-
mance of these modal groups are presented in Figs. 16A and 17A, respectively, which
illustrates the gradual reduction in errors manifested in both conditions. However,
one notable feature of these results is that although learning was faster in the Type
IV condition overall, the reduction in number of errors, once it starts, occurs more
abruptly in the Type VI condition. On the one hand, an associationist account of
learning like ALCOVE explains the faster learning of the Type IV category structure
in terms of the larger within-category similarity (and smaller between-category sim-
ilarity) found in that structure as compared to Type VI. However, this account does
not explain why the rate of learning should be slower in the Type IV condition (even



Fig. 16. Two clusters of Type IV learners.
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though it starts earlier). Instead, we speculate that some Type IV participants first
discovered a single-dimension rule and then memorized the exceptions to this rule.
This strategy, which accords with the predictions of RULEX, yields an initial reduc-
tion in error rate to 0.25 because the single-dimension rule produces the correct clas-
sification on 6 out of the 8 exemplars, and then a slow elimination of all errors as the
two exceptions are memorized.

Although the group level performance profiles of the Type IV and VI conditions
reflect gradual learning, in fact we found two all-or-none learners in each condition.
The performance profiles of these two clusters are presented in Figs. 16B and 17B.
We speculate that the two all-or-none learners in the Type IV condition (Fig. 16B)
first tested single-dimension rules on each of the 3 dimensions, and then, after discov-
ering that each of these rules had some predictive validity, formed a 2-out-of-3 deci-
sion rule to solve the problem. Given the absence of any rule-like solution for the
Type VI category structure, the presence of all-or-none learners in that condition
(Fig. 17B) is quite surprising—especially the one individual whose last error occurred



Fig. 17. Two clusters of Type VI learners.
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on trial 19! Conceivably, these individuals may have first learned to successfully iden-
tify each of the eight stimuli (that is, they first eliminated the problem of between-cat-
egory similarity that makes the Type VI structure so difficult), and only then learned
to associate these stimuli and their correct category label. Indeed, one participant re-
ported encoding the stimulus with the features $, !, and x as the word ‘‘six,’’ a mne-
monic strategy likely to have accelerated the association of the stimulus with its
category label (Gibson, 1940; Bower & Hilgard, 1981).

Finally, as we did for the Type II condition, we also consider the question of
whether Type IV and VI participants exhibited a consistent scan path. As before,
for each participant the three stimulus dimensions were initially classified as being
of either high, medium, or low priority, and then we tabulated fixations to each
dimension in 50 ms bins. These tabulations averaged over all Type IV and VI trials
are presented in Figs. 18A and B, respectively. If, at the end of learning, the three
stimulus dimensions were being examined in a random order, we would expect the
three histograms to exhibit a high degree of overlap. In contrast, both Figs. 18A



Fig. 18. Fixations as a function of elapsed trial time for the highest, medium, and lowest priority
dimensions. (A) Type IV condition. (B) Type VI condition.
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and B indicate a clear separation between histograms. This result suggests that most
Type IV and VI participants utilized a consistent scan path between dimensions.

4.4. Fixations early in learning

One of the most striking results from the current study is that participants tended
to fixate all stimulus dimensions early in learning. For the 62 participants who
reached the learning criterion, the sigmoid fits to the number of dimensions fixated
yielded an average value of the initial parameter of 2.54, indicating that participants
initially fixated most of the 3 dimensions. Direct confirmation of this finding is pre-
sented in Fig. 19, which shows the average number of dimensions fixated in the first
five trials of the experiment for all 72 participants. Note that during these initial trials
relatively little learning has occurred, and thus Fig. 19 reflects participants� eye
movements before they have acquired substantial knowledge of the correct category
representation. The results are clear-cut. Out of 72 participants, only three



Fig. 19. Number of dimensions fixated in the first five trials of the experiment for all 72 participants.
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consistently fixated 1 dimension in the first five trials, and only 6 fixated an average
of less than 1.5. Instead, during these trials 85% of participants fixated two or more
dimensions, and the modal number of dimensions fixated was three.
5. Discussion

Since Shepard et al.�s (1961) seminal study a core assumption of categorization
theory has been that category learning involves learning to attend to those stimulus
dimensions necessary for category discrimination. However, evidence for this claim
has consisted of demonstrations that dimensions vary in their influence on explicit
categorization (and similarity) judgments, not on the operation of selective attention
per se. Our findings provide strong support for the claim that categorizers learn to
allocate their attention to optimize classification performance. Only one of 18 Type
I participants and just two of 18 Type II participants failed to restrict attention to
only those relevant dimensions by the end of learning. To our knowledge, the current
results provide the first direct evidence for the operation of selective attention in cat-
egory learning.

An important accomplishment in categorization theory has been the specification
of computational models that formalize the mechanism by which classification expe-
rience influences selective attention. According to the predictions we derived for one
member of the class of associationist learning models—the ALCOVE model—atten-
tion will generally be allocated to most or all stimulus dimensions and then gradually
shift to diagnostic dimensions as learning proceeds. In contrast, our predictions for
the hypothesis-testing, or rule-based, model known as RULEX, were that attention
should first be allocated to single stimulus dimensions as 1-dimension categorization
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rules are tested, and then to multiple dimensions as more complex rules are consid-
ered. In fact, we found that early in learning participants tended to fixate all stimulus
dimensions, a result which ostensibly provides support for ALCOVE. At the same
time, however, we also found that numerous participants exhibited all-or-none learn-
ing, the sudden elimination in errors usually taken to be characteristic of rule-based
learning.

In the two sections which follow we review the evidence in favor of both associ-
ationist and rule-based learning. We then propose a framework for category learning
which accounts for both of these learning strategies. Finally, we conclude with a dis-
cussion of our third notable eyetracking result: The fact that changes in eye move-
ments tended to follow rather than precede changes in errors.

5.1. Evidence for associationist accounts of category learning

Overall, we found that considerable numbers of learners exhibited the type of
gradual learning typical of associationist learning models. There are two sources
of evidence for this conclusion. The first involved the sigmoid functions we fit to par-
ticipants� error data which showed a gradual drop in error rates from 50 to 0% occur-
ring over several trials. Of those participants assigned the Type II category structure,
the majority (12 of 18) exhibited a gradual decrease in errors which occurred over
about three blocks. We also found that gradual learning was exhibited by virtually
all participants in the Type IV and VI conditions.

By itself, of course, a gradual decrease in errors cannot be considered uniquely
diagnostic of associationist learning, because rule-based classification processes are
also likely to include numerous sources of stochastic variability that can also pro-
duce a gradual decrease in errors. For example, even after the correct rule has been
discovered, the chance of successfully retrieving that rule from memory on any given
trial may be less than certain. However, the number of such retrieval failures will de-
crease as the rule becomes more strongly represented in memory (Anderson, 1983).
Second, application of a correct rule also requires correctly identifying the stimulus
dimension values; misidentification of a feature (e.g., due to perceptual noise) will
result in misclassification (Smith et al., 1998). Third, noise at the decision stage
may arise when classifiers attempt to probability match; however, responses will tend
to become more deterministic as classification experience increases (Ashby & Gott,
1988; McKinley & Nosofsky, 1995; Nosofsky & Zaki, 2002). Finally, simple motoric
response noise (i.e., pushing the wrong button) may combine with all these factors to
produce a pattern of gradually decreasing errors.

Nevertheless, our claim of gradual learning is also supported by a second source
of evidence, the eyetracking data. A model like ALCOVE not only predicts a gradual
reduction in errors, but also a gradual shift in attention to the relevant dimensions.
In fact, just such a shift (as measured by eye movements) was observed for the modal
Type II participants who exhibited gradual learning: the shift to the two relevant
dimensions occurred over the course of eight or more trials. Taken together, the er-
ror and eye tracking data provide strong support for the presence of ALCOVE-like
learning processes for a large number of our participants. It is important to note,
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however, that a critical feature of these data is the fact that changes in eye move-
ments tended to follow rather than precede the reduction in errors, a result which
we discuss at length below.

5.2. Evidence for rule-based accounts of category learning

We also found considerable evidence for the use of hypothesis-testing or rule-
based learning processes. Although gradual learning is not by itself diagnostic of
associationistic learning (as just discussed), all or none learning in which errors
are suddenly eliminated is strongly diagnostic of the discovery of a rule that discrim-
inates category members (Bower & Trabasso, 1963). In fact, we found that the error
sigmoids of the majority (13 of 18) of participants assigned the Type I category struc-
ture exhibited a drop in errors from 50 to 0% in only one or two trials. We also evi-
dence of all or none learning with the more complex category structures (6
participants in the Type II condition, and 2 in each of the Type IV and VI
conditions).

Our eye movement predictions for rule-based learners were derived from the RU-
LEX model. Because RULEX initially tests simple single-dimension rules, and only
tests multi-dimensional rules when those simple rules fail, we predicted that learners
would fixate single dimensions early in learning and would only later fixate multiple
dimensions for those category structures that cannot be solved with a single-dimen-
sion rule. In fact, perhaps our most striking result was the almost complete absence
of evidence that category learners fixate single stimulus dimensions early in learning.
Of the 72 undergraduates who participated in the current study, only three fixated
approximately one dimension in the first five trials of the experimental session. In-
stead, during these trials 85% of participants fixated two or more dimensions, and
the modal number of dimensions fixated was three.

Superficially at least, these eye movement data call into question RULEX�s claim
that people first test single-dimension rules when learning categories. However, it is
important to recognize that RULEX was not specifically designed to account for eye
fixation data, and so we must be careful to consider possible reasons for the failure of
our (perhaps overly simplistic) expectations regarding the relationship between eye
fixations and rule testing. It may be that all-or-none learners were in fact testing rules
in the manner prescribed by RULEX, but that eye fixations did not reflect this fact
because they were also being influenced by cognitive processes not involved in rule
testing per se. There are a number of such processes that may have been partly
responsible for the observed eye movements.

One possibility is that participants initially fixated all dimensions in order to learn
the structure of the stimulus space. Although the binary dimensions were described
to participants before the experiment started, this information may not have been
fully encoded, and thus some of their initial efforts may have been devoted to more
fully learn the six dimension values and their locations (e.g., ‘‘$’’ and ‘‘¢’’ were the
two values that appeared at the top of the screen, that ‘‘x’’ and ‘‘o’’ appeared at
the bottom left, etc.). This encoding could assist in the generation and testing of
future candidate rules, or the memorization of individual exemplars.
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Another possibility is that participants construed their learning task to be broader
than just classification. For example, some investigators have argued that the central
function of categories—the reason people learn categories in the first place—is to al-
low them to infer the presence of features that cannot be directly observed (Ander-
son, 1991; Corter & Gluck, 1992; Markman & Ross, 2003). If this is correct, then
during category learning a learner�s goals may not be just to determine features�
cue validity (the probability of the category given the feature), but also their category
validity (the probability of a feature given the category). On this account, category
learners fixate all dimensions of a stimulus in order to learn which features are char-
acteristic of each category and thus promote the accuracy of feature inferences that
may be required in the future.

Learners may also be driven by the general goal of remembering the individual
instances to which they are exposed. Recognizing individual instances is likely to
have adaptive advantages beyond classification performance (Palmeri & Nosofsky,
1995); more generally, such memorization may arise from a general cognitive strat-
egy of avoiding information loss (Medin & Florian, 1992). Finally, for completeness
we note that under some conditions (ones unlikely to have obtained in the current
experiment) stimulus dimensions may attract attention because learners find them
intrinsically interesting, or because of preattentive processes that obligate the pro-
cessing of certain aspects of stimuli (Lamberts, 1995, 1998).

However, each of these possibilities fails to account for the high correlation we
found between changes in eye fixations and the elimination of classification errors.
If fixations to all stimulus dimensions merely reflected participants� attempt to en-
code the stimulus dimensions, then such fixations should have disappeared in the rel-
atively small number of trials needed for such encoding to be complete. And if those
fixations reflected the learning of category validities (or the memorization of individ-
ual exemplars or because the stimuli were intrinsically interesting), those fixations
should have continued well after classification errors ceased. Instead, we found that
fixations to dimensions irrelevant to correct classification were eliminated at the
same time that errors ceased (or a few trials later). It therefore follows that those fix-
ations must have arisen as a result of cognitive processes that were directly related to
the goal of category learning.

For this reason, we conclude that models like RULEX that assume that learners
start off by (only) testing single-dimension rules cannot be considered complete ac-
counts of our participants� learning strategies. At the same time, however, the sudden
elimination of errors in our Type I condition indicates that category learners are able
to easily discover single-dimension rules when they exist. The question then is: Why
do learners examine all stimulus dimensions at the same time they are able to extract
single-dimension rules so readily?

5.3. Implications for multiple-systems theories of category learning

We believe that the answer to this question lies in the recognition that category
learners are often pursuing more than one learning strategy. That is, although
our all-or-none learning data indicates that participants are able to discover
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single-dimension rules when they exist, they are applying other learning approaches
at the same time, at least one of which requires access to information from all stim-
ulus dimensions. We can envision a number of strategy combinations that would ex-
plain the fixations to all dimensions early in learning.

5.3.1. Rule testing plus exemplar memorization

One possibility is that although learners begin by explicitly searching for single-di-
mension rules, they recognize that a perfect single-dimension rule may not be found,
and that memorizing individual exemplars may be necessary as a backup strategy.
Examining all stimulus dimensions early in learning would provide the learner with
a head start on this memorization process. Examining all stimulus dimensions would
also provide a head start on the process of memorizing exceptions to an imperfect yet
predictive single-dimension rule. Consistent with this proposal is evidence demon-
strating the influence of specific exemplars on classification even when a perfect clas-
sification rule is available. For example, Allen and Brooks (1991) used a novel
procedure in which they provided participants with the correct rule (a 2-out-of-3
rule) to distinguish members of two categories of imaginary animals. Nonetheless,
they found that performance on a transfer classification test was influenced by fea-
tures unrelated to the rule, that is, by overall similarity of the test items to the train-
ing items (also see Nosofsky, Clark, & Shin, 1989; Smith et al., 1998). Erickson and
Kruschke (1998, Experiment 1), found that after learning rule-plus-exception cate-
gory structures, categorizers were influenced by the similarity of transfer stimuli to
the exceptions, as standard exemplar models would predict. Finally, Nosofsky
(1991) found that the frequency of training stimuli influenced subsequent classifica-
tion performance even for one-dimensional category structures, a result explained
naturally in terms of the memory traces of the individual training exemplars (also
see Erickson & Kruschke, 1998; Experiment 2).

5.3.2. Exemplar memorization plus spontaneous rule noticing
The account just described assumes that people�s initial explicit learning strategy

is to look for one-dimensional rules, and to use exemplar memorization as a backup
strategy. However, it is also possible that some learners started off by trying to mem-
orize exemplars, but that all-or-none learning arose in the Type I condition when
learners ‘‘noticed’’ (somehow) that one dimension covaried consistently with the cat-
egory label. This noticing might have been based on comparing the current exemplar
with the previous exemplar stored in working memory (Anderson, Kline, & Beasley,
1979). Or, the comparison may have been between the current exemplar and one
stored in long-term memory that the learner was reminded of (Ross, Perkins, & Ten-
penny, 1990).

5.3.3. Rule testing (or noticing) plus meaningful interfeature relations

Finally, learners may have examined all stimulus dimensions because they are
biased to expect that features are meaningfully related on the basis of their prior
knowledge. Indeed, there is considerable evidence that learners readily notice and
make use of inter-feature relations when they are available. Research has shown that
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supervised category learning is accelerated when the categories� features are mutually
meaningful and coherent in light of existing knowledge (Kaplan & Murphy, 2000;
Murphy & Allopenna, 1994; Rehder & Ross, 2001; Rehder & Murphy, 2003). Like-
wise, people�s unsupervised sorting of items into categories is strongly determined by
their prior knowledge about the items� features (Ahn &Medin, 1992; Kaplan &Mur-
phy, 1999; Medin, Wattenmaker, & Hampson, 1987; Spalding & Murphy, 1996). Of
course, the fact that cross-dimension feature relations influences learning entails that
learners were attending to multiple dimensions in order to have noticed those
relations.

Taken together, these possibilities have led us to conceive of our participants as
opportunistic learners who can make simultaneous use of multiple learning strategies
and who select a strategy when it yields a solution to the learning problem. This ac-
count predicts the current pattern of eye movements early in learning, because eye
fixations to all stimulus dimensions would be required, for example, to (a) start
the process of memorizing exemplars, (b) compare the current exemplar with the pre-
vious one stored in memory in order to notice commonalities, or (c) to search for
meaningful relations among features. Stated more generally, we suggest that learners
examine all stimulus features because it maximizes the number of potential learning
strategies involved.

This view of learners as opportunistically pursuing multiple learning strategies is
consistent with the current trend toward considering category learning as involving
more than one learning module (Ashby, Alfonso-Reese, Turken, & Waldron, 1998;
Erickson & Kruschke, 1998; Kruschke, 2001). For example, Erickson and Kru-
schke�s (2001) ATRIUM model instantiates a mixture of experts architecture in
which multiple modules each apply a different strategy to solve the current learning
problem. In its current form, ATRIUM includes both a rule module that works to
detect a single-dimension rule that solves the categorization problem, and an exem-
plar module (equivalent to ALCOVE) that simultaneously associates stored exem-
plars with their correct category label. A gating mechanism then determines how
the responses from these two modules should be combined to produce an overt re-
sponse for a given exemplar, with preference eventually being given to the module
that is producing the fewest classification errors. Similarly, Ashby et al.�s (1998)
COVIS model contains both a ‘‘verbal’’ rule-learning module that can operate on
single dimensions and a ‘‘procedural learning’’ module that discovers an optimal
decision bound using all available dimensions. These modules then compete for
attention such that the more successful module is increasingly used in category deci-
sions. In either of these frameworks, eye fixations would be made to all dimensions
early in learning because one of the learning modules requires access to all the infor-
mation in the stimulus.

Our discovery of distinct clusters of performance provides additional evidence for
a multi-strategy view of category learning. For example, a rule module dedicated to
discovering single dimension rules will usually be able to solve a Type I category
learning problem faster than an ALCOVE-like exemplar module. However, because
of the presumably stochastic nature of the processes involved, the exemplar module
will occasionally win this race. This conjecture is supported by our finding in the
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Type I condition that although the majority of participants apparently solved the
problem by discovering the correct rule, a substantial minority (4 of 18) exhibited
the gradual learning characteristic of associative learning. Similarly, the finding in
the Type II condition that learning was gradual for 9 participants but all-or-none
for 4 suggests that an ALCOVE-like exemplar module will usually be the first to ar-
rive at the solution to an exclusive-or problem, but that a (perhaps RULEX-like)
module responsible for discovering rules that include conjunctions, disjunctions,
and combinations of the two will occasionally win the race.

Considerably more work is required to clarify the relationship between multiple
learning strategies, and how those strategies interact with one another during learn-
ing. For example, one outstanding question is how attention gets redirected toward
one learning strategy and away from others. According to ATRIUM, this change
occurs gradually as error feedback influences the gating mechanism that combines
the outputs of multiple experts in a way that minimizes error. However, this gradual
shift is incompatible with our finding of all-or-none learning (in the Type I condition
for example) that suggests that explicit classification responses suddenly come under
control of a single-dimensional rule. More recently, Kruschke (2001; Kruschke and
Johansen) has developed a series of models that incorporate rapid shifts of attention
(either between different single-dimension rules, or between rules and an exemplar
module) that have the potential of accounting for the patterns of all-or-none learning
we observed.

A final important question concerns the role of explicit strategy choice on the part
of the learner. We have suggested that learners examine all stimulus dimensions in
order to involve as many learning modules in the learning process as possible. But
we also found a small number of participants who did not examine all stimulus
dimensions early in learning, a result we attributed to those learners adopting an ex-
plicit strategy of searching for rules. In addition, we suggested that the small number
of Type I and II participants who never restricted their eye fixations to the relevant
dimensions adopted an explicit strategy of just memorizing each exemplar�s category
membership. That is, although we believe that most category learners start with an
open mind regarding the form of the solution to the learning problem, some will be-
gin with a commitment to a specific strategy (e.g., rule discovery, memorization, or
one of the other learning strategies we have noted). In such cases eye fixations will
reflect the informational requirements of that strategy alone.

5.4. Attention to dimensions vs. objects in category learning

The final notable aspect of our eyetracking results is the fact that, although eye
movements were generally well synchronized with error reduction, the changes in fix-
ations tended to follow rather than precede changes in errors. This finding represents
a dissociation (albeit a short-lived one) between two senses of ‘‘selective attention’’
which have been used in the literature, the relative importance of stimulus dimen-
sions (used in the categorization field and this article) vs. attention to objects in one�s
visual field. Whereas our participant�s overt classification behavior provides informa-
tion about the relative influence of stimulus dimensions, their eye movements
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provide information most directly about their allocation of spatial attention to the
individual objects (for us, features) on the computer screen. This dissociation is a
puzzle, because from the perspective of multiple-systems theories of learning, the
most natural prediction would be that eye movements would reflect the informa-
tional needs of a single ‘‘expert’’ when that expert came to dominate classification
decisions. To take ATRIUM as an example, when presented with a one-dimensional
categorization problem the rule module would discover the correct rule in fairly
short order, and would quickly dominate the categorizer�s explicit classification re-
sponses. When this occurred, the fact that the other, ALCOVE-like module was
no longer contributing to classification decisions would release the learner from
the need to fixate dimensions irrelevant to the one-dimensional rule. But we found
instead that although the modal all-or-none Type I learner discovered the correct
1-dimension rule in 12 trials, he or she continued to examine all stimulus dimensions
until trial 16. The question then is: Why do learners continue to allocate spatial
attention (in the form of eye movements) to information which has become irrele-
vant to their overt classification responses?

We suggest two possible explanations for this (temporary) dissociation between
eye fixations and the weight that dimensions have on classification. First, category
learning may involve not only multiple learning modules, but also a strategic com-
ponent which (a) monitors the progress that those modules are making in solving
a classification problem and (b) abandons all but one module only when there is evi-
dence that that module has solved (or is about to solve) the problem. For example, it
is possible that the change in eye movements of the modal all-or-none Type I learner
(Fig. 6) was delayed because four error-free trials were required before the learner
knew that the correct rule had been discovered. Only then were they willing to aban-
don other learning strategies and focus exclusively on the one relevant dimension.
Similarly, the modal Type II gradual learner (Fig. 10) began to show a reduction
in their error rates about trial 40. However, shifts in eye fixations to the two relevant
dimensions did not begin until about trial 56, when the chance of making an error
had fallen to about 0.20. The restriction of eye movements to the two relevant
dimensions may have started only once a reduction in the rate of errors signaled that
an ALCOVE-like learning module was heading toward a solution of the learning
problem. At that point other learning strategies were abandoned and eye fixations
began to reflect the informational needs of ALCOVE alone.

A second type of explanation for the dissociation focuses on cognitive limitations
in how readily knowledge about the importance of stimulus dimensions can be trans-
formed into knowledge about the importance of spatial locations. In discussing this
possibility, it is useful to consider one formal model of attention that explicitly dis-
tinguishes between the two notions of selective attention, namely, Logan�s (2002)
ITAM model. According to ITAM, the objects in a visual field which are likely to
be (spatially) attended are those which possess properties that are preferred on the
basis of a set of priority parameters. In the terminology of ITAM, what our partic-
ipants learned was to place high priority on objects (i.e., features) associated with
those screen locations that provided information relevant to classification. (Note
that, because identifying features required eye movements, all non-Type I learners
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learned to spatially attend to multiple screen locations sequentially.) In this context,
the question becomes: What prevented those priority parameters from being kept
fully up-to-date with the dimension weights controlling categorization decisions?5

One possibility is that there may be certain costs associated with updating those
parameters. For example, Logan and Godon (2001) showed that an ITAM-like
model can model dual task situations by assuming that task switching costs arise
as a result of the time it takes for an executive control process to change parameters.
Another possibility is that the executive control process may not have full access to
the dimensions weights which are represented in a (perhaps ATRIUM-like) category
learning module. Finally, the updating of priority parameters may not involve exec-
utive control at all, but instead reflect the operation of more implicit learning pro-
cesses. For example, whereas we think that it is likely that the relatively sudden
change in the eye movements of our modal Type I learner involved executive control
(perhaps reflecting the strategic factors mentioned above), the slower changes exhib-
ited by our modal Type II learners were more likely to be due to implicit learning
processes in which accumulated experiences (i.e., cases of successful classification)
gradually led them to attend to only relevant spatial locations.

The current study of course is not alone in demonstrating that people can learn
which spatial locations in a visual field they should attend to. For example, Chun
and Jiang (1998) found that locating a target in a field of distractors became more
efficient when the target appeared in a familiar visual context (an effect they attrib-
uted to participants learning where to attend in that context). And, using eyetrack-
ing, Haider and Frensch (1999) have shown that participants learn to ignore
irrelevant information when acquiring a new cognitive skill. Together with the cur-
rent article, these studies suggest that an important future goal for models of spatial
attention will be to specify the mechanisms that change the allocation of spatial
attention as a result of task experience.

5.5. Conclusion

To our knowledge, the current experiment is the first to use eyetracking to exam-
ine the question of selective attention in category learning. There were three primary
findings. The first is that participants learned to allocate attention to stimulus dimen-
sions in a way that optimized their ability to discriminate categories. This finding
corroborates the assumptions of virtually all modern theories of category learning.
The second finding is that learners tend to fixate all stimulus dimensions early in
5 ITAM also includes a specification of how objects are classified which is formally equivalent to
exemplar models (and thus ALCOVE), and thus stipulates a set of dimensions weights which are formally
equivalent to those we have assumed throughout this article. However, in ITAM ‘‘classification’’ means
identifying (or otherwise labeling) an individual object in the visual field as part of the same cognitive act
in which one selectively attends to that object. As mentioned, for us an ‘‘object’’ is one of the three features
on the screen, and thus what ITAM refers to as classification involves identifying that feature (e.g., in Fig.
2, noting that there is an ‘‘x’’ on the bottom left of the screen). In contrast, in this article classification
refers to integrating information about multiple features into an overall categorization decision.
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learning. This occurs despite the fact that they are also able to easily discover one-
dimensional categorization rules during the same period. We have interpreted these
two findings as consistent with multiple-systems theories of learning in which partic-
ipants will initially maximize information input in order to maximize the number of
learning modules involved. The third finding is that changes in eye fixations to only
relevant dimensions tend to occur after errors have been greatly reduced (or com-
pletely eliminated)— an effect we attributed to (a) strategic processes in which par-
ticipants abandon alternative learning strategies after one module has solved the
learning problem, (b) cognitive limits that influence how objects get prioritized in
a visual field, or both.

We believe that the results reported here have established the usefulness of eye-
tracking for testing existing categorization theory and forming important new
hypotheses regarding people�s learning strategies. As a sophisticated online-process-
ing measure, eyetracking data will help to advance the construction of models that
specify the cognitive processes governing classification decisions.
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