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Humans form social coalitions in every society on earth, yet we know very little about how the general
concepts us and them are represented in the brain. Evolutionary psychologists have argued that the human
capacity for group affiliation is a byproduct of adaptations that evolved for tracking coalitions in general.
These theories suggest that humans possess a common neural code for the concepts in-group and
out-group, regardless of the category by which group boundaries are instantiated. The authors used
multivoxel pattern analysis to identify the neural substrates of generalized group concept representations.
They trained a classifier to encode how people represented the most basic instantiation of a specific social
group (i.e., arbitrary teams created in the lab with no history of interaction or associated stereotypes) and
tested how well the neural data decoded membership along an objectively orthogonal, real-world
category (i.e., political parties). The dorsal anterior cingulate cortex/middle cingulate cortex and anterior
insula were associated with representing groups across multiple social categories. Restricting the analyses
to these regions in a separate sample of participants performing an explicit categorization task, the
authors replicated cross-categorization classification in anterior insula. Classification accuracy across
categories was driven predominantly by the correct categorization of in-group targets, consistent with
theories indicating in-group preference is more central than out-group derogation to group perception and
cognition. These findings highlight the extent to which social group concepts rely on domain-general
circuitry associated with encoding stimuli’s functional significance.

Keywords: intergroup relations, social categories, functional magnetic resonance imaging, multi-voxel
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Humans reliably carve up the social world into us and them.
This practice is a human universal—present in every society on
earth (Brown, 1991). The variety of groups with which humans
affiliate is vast, ranging from race and religion to political affili-
ation and nationality. These groups vary on countless dimensions,
from visual cues marking group membership to associated stereo-

type content. Evolutionary psychologists have argued that catego-
rizing people by specific social categories (e.g., race) is a byprod-
uct of adaptations that evolved for detecting coalitions more
generally (Cosmides, Tooby, & Kurzban, 2003; Sidanius & Pratto,
2004; Pietraszewski, Cosmides, & Tooby, 2014). For example,
briefly focusing people on adversarial mixed-race groups, identi-
fied by yellow versus grey shirts, temporarily diminishes the extent
to which they encode race (Kurzban, Tooby, & Cosmides, 2001).
Even 5-year olds prefer other-race children to same-race children
when the other-race children speak with native rather than foreign
accents (Kinzler, Shutts, DeJesus, & Spelke, 2009). Thus, humans
may have a flexible, common neural code for representing the
concepts in-group and out-group, invariant to the particular social
category by which group boundaries are instantiated.

By some accounts, encountering a new individual activates three
“primary” social categories—race, gender, and age—which the
mind automatically encodes (e.g., Hamilton, Stroessner, &
Driscoll, 1994; Fiske & Neuberg, 1990). Each of these social
categories is associated with unique stereotypes and social knowl-
edge. Though researchers have discovered a great deal about what
regions of the brain track race, gender, and other significant social
categories (see Amodio, 2014; Kubota, Banaji, & Phelps, 2012; Ito
& Bartholow, 2009 for reviews), far less is known about which
brain networks track coalitions—in-groups and out-groups—more
generally (see Cikara & Van Bavel, 2014 for a review). Cultural
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stereotypes, personal experiences, and other category-specific at-
tributes lead to distinct activation patterns for different social
categories (Stolier & Freeman, 2016). However, it is unknown
whether the specific patterns of brain activity associated with
distinguishing in-group from out-group members along one social
category are also associated with distinguishing groups along
other, unrelated social categories. If so, it would indicate a gener-
alized representation of us and them abstracted away from the
specific features associated with any one category. The current
research tests this hypothesis.

Although social group representations appear to be widely dis-
tributed across the brain, several candidate brain regions have
previously been linked to different representational dimensions
theorized to support group representation. For instance, judgments
of similar others engage medial prefrontal cortex (MPFC) and
draw on overlapping neural populations engaged during self-
referential thought (Jenkins, Macrae, & Mitchell, 2008; Mitchell,
Macrae, & Banaji, 2006). Thus some have interpreted greater
MPFC response to in-group relative to out-group targets as evi-
dence that similarity to one’s self is the central dimension along
which we group others (e.g., Morrison, Decety, & Molenberghs,
2012). Alternatively, it is possible that generalized social group
representations are organized vis-à-vis their functional signifi-
cance (e.g., good or bad for me?) and therefore draw on domain-
general circuitry associated with coordinating behavior in response
to motivationally relevant stimuli (Cikara & Van Bavel, 2014). For
instance, the anterior insula and dorsal anterior cingulate cortex are
part of a broader network that focuses attention on the most
relevant among internal and extrapersonal stimuli (both social and
nonsocial) to select among competing behavioral repertoires (e.g.,
freeze, fight, flight; Legrain, Iannetti, Plaghki, & Mouraux, 2011;
Menon & Uddin, 2010; Decety, Norman, Berntson, & Cacioppo,
2012). In this view, social categorization is not special, but instead
co-opts circuitry associated with representing both social and
nonsocial dimensions (e.g., evaluation; see Ruff and Fehr (2014)
for a similar discussion regarding the neurobiology of reward and
value in social and nonsocial decision-making).

To examine whether people possess a common neural code
associated with the representation of the concepts of us and them,
we use cross-categorization multivoxel pattern analysis (MVPA).
This approach was inspired by neuroimaging analyses of supra-
modal representations of numbers (Eger Sterzer, Russ, Giraud, &
Kleinschmidt, 2003), objects (Pietrini et al., 2004; Tanaka, 1993),
and emotions (Peelen, Atkinson, & Vuilleumier, 2010; Skerry &
Saxe, 2014). MVPA uses the information carried by fine-grained
patterns of blood oxygenation level-dependent (BOLD) activity
within different brain regions to decode the representation of
different categories of stimuli or visual features (Haynes & Rees,
2006; Mur, Bandettini, & Kriegeskorte, 2009; Norman, Polyn,
Detre, & Haxby, 2006). Unlike traditional univariate analysis,
MVPA uses pattern classification algorithms to map categories of
stimuli or psychological states to brain activity. In short, MVPA
allows investigators to examine whether different neural patterns
of activation within specific brain regions—which may have the
same mean-level of activation, and would therefore go undetected
by traditional univariate analysis—distinguish between different
psychological representations. Furthermore, we probe the specific
constellation of hits and errors made by the classifier to determine
whether in-group and out-group members are represented uniquely

or whether a domain-general dimension (e.g., salience, threat)
drives generalized social group representation (see below).

Overview of the Current Experiments

On one hand, brain networks previously associated with repre-
senting social groups along one social category might be used to
represent groups along other, unrelated social categories. On the
other hand, cultural stereotypes, personal experiences, and other
attributes specifically associated with certain categories might lead
to distinct activation patterns for every category a person encoun-
ters. Here we explore a third possibility: social group representa-
tion, like object or emotion recognition, may rely on the integra-
tion of features along a hierarchy of increasingly abstract “feature-
detectors” (Martin, 1994). In this framework, people should
exhibit neural substrates associated with representing specific cat-
egories that are distinct from those associated with representing
generalized group concepts: us and them.

We assigned participants to arbitrary groups and had them
complete a task in which social categorization was incidental to the
task at hand. We then examined the whole brain for regions
involved in decoding group membership across arbitrary and real
political groups. This approach allowed us to distinguish the neural
substrates of category-specific representations from the neural
substrates of generalized social group concept representations. In
the within-category classification, we trained the classifier to en-
code how people represented in-group and out-group targets of one
kind (e.g., Democrats vs. Republicans) and then tested how well
the neural data decoded group membership within that same cat-
egory but in data from a run that had been excluded from training
(i.e., the leave-one-run-out cross-validation approach). Con-
versely, in the cross-category classification we trained a classifier
to encode how people represented the most basic instantiation of a
single social category (i.e., arbitrary groups created in the lab that
have no history of interaction or associated stereotypes) and tested
how well the neural data decoded membership along an objec-
tively orthogonal, real-world social category boundary (i.e., polit-
ical party membership).1

We focused on political affiliation as the test-case for cross-
category classification because, unlike race and many other sig-
nificant social categories, it is not confounded by visual cues to
group membership. Moreover, recent evidence suggests that im-
plicit bias and behavioral discrimination along political boundaries
is now as potent as bias against racial out-groups in some domains
(Iyengar, Sood, & Lelkes, 2012; Iyengar & Westwood, 2015;
Motyl, Iyer, Oishi, Trawalter, & Nosek, 2014).

Of course our social worlds are more complicated than just us
and them. Although it is safe to ignore or neglect many out-groups,
there are some out-groups who pose an active threat, to whom we
must attend in order to protect the in-group. To better model these
conditions, we included three classes of targets within each social
category: in-group, a neutral out-group, and a competitive, and
therefore threatening out-group. We examined the precise pattern
of the classifier’s hits and errors to glean insight into whether
friends, not-friends, and foes are represented uniquely or whether

1 Note, however, that assignment to arbitrary groups does not preclude
participants from making inferences about the correlation between, for
example, being an Eagle and being a Republican.
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a more general process underlies generalized social group repre-
sentation. For example, if the classifier mistakes in-group and
competitive out-group members more often than in-group and
neutral out-group members, this would suggest group representa-
tion is driven by identifying salient targets, irrespective of their
allegiances. If, however, the classifier mistakes in-group and neu-
tral out-group members more often than in-group and competitive
out-group members, this would suggest that group representation
is driven by identifying active threats. Finally, if the classifier
mistakes neutral and competitive out-group members most often,
this would suggest that group representation is driven by a binary
us-versus-them distinction.

Finally, we ran a second confirmatory experiment with a sepa-
rate sample of participants, restricting the analyses to the regions
identified in Experiment 1. We examined whether cross-
categorization classification remained significantly above chance
in these regions when participants explicitly categorized targets as
arbitrary or political in-group and out-group members.

Method

Participants

Forty-eight participants (27 female; Mage � 22.5) were recruited
via flyers and word-of-mouth from the university and paid $40
(base pay plus bonus: see below) for their time. The final sample
for Experiment 1 included 19 Democrats and 6 Republicans. For
Experiment 2, we recruited only self-identified Democrats. All
were right-handed, native English speakers with normal or cor-
rected vision, with no history of psychiatric or neurological prob-
lems. We obtained written informed consent; procedures complied
with the university’s institutional review board’s guidelines.

Because both experiments were entirely within-subject designs
we aimed for a minimum of 20 participants within each experi-
ment to attain 80% power to detect a moderate-sized effect. For
Experiment 1, one participant was excluded because she was not
able to clearly see the stimuli and one participant did not complete
the entire scan session, leaving 23 participants (17 Democrats and
6 Republicans). For Experiment 2, two participants were excluded
from analysis because of excessive head movement (greater than 2
mm) while in the scanner, and one participant was excluded
because of technical problems during scanning, leaving 20 partic-
ipants (all Democrats). We found no gender differences on any of
our outcome variables. We report all data exclusions, manipula-
tions, conditions, and measures in both experiments. Summary
data, analysis code, and materials are available at https://osf.io/
g9rth/

Experiment 1 Pretest Measures: Team Assignment,
Group Affiliation, Demographic Information

Approximately 1 to 2 weeks prior to scanning, each participant
completed a series of online questionnaires. First, participants
were told that they would be assigned to a team for the experiment.
Second, participants indicated the strength of their agreement with
five personality items, ostensibly for the purposes of team assign-
ment. In reality, each participant was randomly assigned to one of
two competitive teams, the Eagles or the Rattlers. Third, partici-
pants answered 12 questions assessing their propensity to value

and join groups (e.g., “The social groups we belong to are one of
the most important things in our lives” and “We are defined, at
least in part, by the social groups that we belong to”; Cronbach’s
alpha � .69; Dunham & Van Bavel, 2016). The answers ranged
from 1 (strongly disagree) to 7 (strongly agree). Finally, partici-
pants answered two manipulation check questions (“What team are
you on?” and “Against which team will you be competing?”) and
completed demographic information (i.e., age, gender, ethnicity,
college year, political party affiliation, and extent to which they
were socially and fiscally 1 [liberal] to 7 [conservative]).

Experiment 1 Procedure

We told participants they were taking part in a functional MRI
(fMRI) study of spatial location and information processing and
that they would compete in a problem-solving challenge against a
member of the competitive out-group afterward (i.e., a previous
participant who was returning to play on behalf of the opposing
group): “We are going to investigate how your neural responses
during the scan relate to your performance during the competition
after the scan.” Figure 1 provides an overview of the procedure.

Participants then completed a series of prescan tasks. Partici-
pants read the following introduction: “As we’ve told you before,
you are going to participate in an ongoing problem solving chal-
lenge between two teams: the EAGLES team and the RATTLERS
team. First you will complete the fMRI scan and then you will
compete in the challenge. Depending on the performance of you
and your team, you may win money in addition to the basic
participation payment. Specifically you will receive $30 for par-
ticipating, but you could increase your earnings to $40 if your team
performs well. Please note: Some people do not fit the profile of

Figure 1. (A) Schematic overview of the procedure. Participants com-
pleted personality questionnaires (to receive assignment to competitive,
arbitrary teams) and demographic information (including political party);
�1–2 weeks later in the lab, participants completed manipulation check
measures and the main experiment in the scanner. (B) Main experimental
trials examples. Participants identified the corner in which target descrip-
tions appeared. See the online article for the color version of this figure.
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either the Eagles or the Rattlers. We’re assigning these people to
the BEARS team. You will not meet or compete with anyone from
this team.” Everyone received the $10 bonus at the end.

As a manipulation check, participants were asked to report the
name of their team; all but one participant correctly recalled their
team assignment from the pretest survey. We also showed partic-
ipants a social network diagram illustrating that they were much
more similar to their teammates (and that the competing players
were much more similar to one another) than the groups were to
each other because greater group cohesion increases intergroup
bias (manipulation was identical to that in Experiment 4 in Cikara,
Bruneau, Van Bavel, & Saxe, 2014). We explained that the par-
ticipants’ own team had accumulated 82 points whereas the other
team had earned 84 points indicating that it was a tight competi-
tion. Whichever team had the higher score at the end of the
experiment would win the bonus. Participants then indicated how
much they agreed with the following statements: “I [like/value/
feel] connected the [Eagles/Rattlers] group” ranging from1
(strongly disagree) to 100 (strongly agree; see Cikara et al., 2014).
Both team identification scales showed good reliability (Cron-
bach’s alpha for in-group � .75, out-group � .68). We averaged
across the three items to generate arbitrary in-group and out-group
identification scores, respectively.

Next participants completed a series of practice trials for the
main task. Participants’ task was to identify in which of four
quadrants a statement appeared (upper left/right, lower left/right
corresponding to the 1, 2, 3, and 4 buttons). Each statement took
the structure of “[name] is a [group]” (e.g., “Don is a Rattler.”) and
stayed on the screen for 4 s. The names were gender-matched to
the participant to avoid activating gender as another social cate-
gory. There were six group labels: Eagle, Rattler, Bear, Democrat,
Republican, Constitutional, creating a 3 (group: in-group, out-
group, neutral group) � 2 (social category: arbitrary team, political
party) design. Participants saw two example trials and were
quizzed on the correct answer for another two sample trials.

At the end of the prescan task, we explained

You may have noticed that there is reference to a team called the
Bears. These people do not fit the profile of either a Rattler or an
Eagle, but we give them an opportunity to participate and earn money
anyway. They are not a part of the problem-solving challenge. You
are not in competition with them. Remember, you have been assigned
to your team based on your personality item responses. Your team-
mates are people, who share your traits and who have already been
scanned or will be scanned in the next few weeks.

We also clarified that participants would have an opportunity to be
the opponent for a future participant for further compensation if
they were interested in signing up.

Participants first underwent an anatomical scan. Then they
started the main task, which included 10 runs. Each run included
four trials of each of the six conditions, resulting in 24 trials per
run (�5 min). Trials were interleaved with a jittered intertrial
interval, which ranged from 6 to 20 s. Each trial within each
condition appeared in a different quadrant to ensure condition was
not correlated with location. At the end of each run, we asked
participants to repeat the last statement they saw to confirm they
were actually encoding the content of the statement in addition to
its location. On average, participants reported the correct quadrant
on 97% of trials (95% when we coded trials in which participants

did not respond within 4 s as errors), indicating they were paying
attention to the task. After the scan, participants were told they
would not actually have to participate in a challenge against
another player and were fully debriefed about the purpose of the
experiment.

Experiment 2 Pretest Measures

Team assignment followed the same procedure as in Experiment
1, except that all participants were assigned to the Eagles team.
Participants reported their party affiliation and the extent to which
they “like/value/feel connected to” their political party (� � .83,
M � 62.96).

Experiment 2 Procedure

The procedure for Experiment 2 differed from Experiment 1 in
only a few ways. First, we omitted the spatial location and infor-
mation processing cover story. Instead, we explained, “this is an
fMRI study examining the effect of cooperation and competition
on the mind and brain. We are going to investigate how your
neural responses during the scan relate to your performance during
the competition after the scan.” The problem-solving challenge
structure remained the same in order to set up a competitive
relationship between the Eagles and Rattlers.

As in Experiment 1, participants reported their team member-
ship, saw the social network diagram, and indicated how much
they agreed with the following statements: “I [like/value/feel]
connected the [Eagles/Rattlers] group (see Cikara et al., 2014). The
answers ranged from 1 (strongly disagree) to 100 (strongly agree).
Both team identification scales showed good reliability (� for
in-group � .89, out-group � .76). Participants then completed a
practice round of the main fMRI task. We instructed them: “You
will be reading descriptions of people. Please tell us as quickly as
possible whether or not the person described is a member of your
group. The descriptions will vary in terms of personality or polit-
ical membership.” Participants were instructed to press the “1” key
if it was an in-group member, and the “2” if it was an out-group
member. There was no third neutral group in this experiment (i.e.,
no references to Bears or Constitutionals).

The explicit categorization task utilized an event-related de-
sign. Participants completed two runs of the task. Each run
included 13 trials of each of the 4 conditions (in-group/out-
group � arbitrary team/political party, resulting in 52 trials per
run (�8 m). On each trial, participants read statements of the
form “[name] is a [group]” and indicated, using a button box,
whether the person described was an in-group or an out-group
member. Statements appeared for 2 s followed by a fixation
cross, which appeared for 2–16 s (jittered). Participants were
required to respond within the 2-s window during which the
statement was presented.

fMRI Acquisition

At the beginning of each scan session, we acquired a high-
resolution T-1 weighted anatomical image (T1-MPRAGE, 1 �
1 � 1 mm) for use in registering activity to each participant’s
anatomy and spatially normalizing data across participants. Echo-
planar images were acquired using a Siemens Magnetom Verio 3T
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System (Siemens Solutions, Erlangen, Germany) at the Scientific
Imaging & Brain Research Center (TR � 2000 ms, TE � 29 ms,
field of view � 192 mm, matrix size � 64 � 64). Near whole-
brain coverage was achieved with 36 interleaved 3.0 mm near-
axial slices.

fMRI Preprocessing and Data Analysis

SPM8 (www.fil.ion.ucl.ac.uk/spm/software/spm8/) was used to
analyze each participant’s MRI data, which were motion corrected
and then normalized and resliced to 2 mm � 2 mm � 2 mm voxels
to a common brain space (Montreal Neurological Institute, EPI
Template). Functional images were motion-corrected within-run to
the first image of each run, then coregistered to the anatomical
image. Normalization warp was produced by SPM combined seg-
mentation and normalization and then applied to the anatomical
image and the coregistered functionals.

We first built a general linear model of the experimental design,
and used this model to analyze the BOLD response in each voxel.
In Experiment 1, the model included the six regressors of interest
(in-group/out-group/neutral � arbitrary team/political party) as
well as nuisance regressors (run effects and time and dispersion
derivatives). In Experiment 2, the model included four regressors
of interest (in-group/out-group � arbitrary team/political party) as
well as nuisance regressors. Each event consisted of the TRs
during which each statement was presented on the screen. We
modeled the conditions as a boxcar (matching the onset and
duration of each event) convolved with a standard hemodynamic
response function. This process generated 10 betas per regressor
(one beta image per run) in Experiment 1, and two betas per
regressor in Experiment 2.

Classification

The MVPA analyses were conducted in PyMVPA, using a
LIBSVM classifier. For Experiment 1, we used an n-fold cross-
trainer partitioner, which allowed the linear CSVMC classifier to
train on 9 runs of one class of groups and decode the other class of
groups from the run that was left out. For example, the classifier
would train on arbitrary team in-group/out-group/neutral betas
from runs 1–9 and then test on political in-group/out-group/neutral
betas from run 10. The partitioner iterated through all 10 runs and
averaged across the folds to generate accuracy scores for each
participant. We ran the cross-category classifier twice—once
training on arbitrary and testing on political groups and once
training on political and testing on arbitrary groups. We also ran
two within-category classifiers: training on arbitrary, then testing
on arbitrary; training on political, then testing on political.

A searchlight (3-voxel radius; Kriegeskorte, Goebel, & Bandet-
tini, 2006) analysis across the whole brain assigned a classification
accuracy value to each voxel, from which we subtracted chance
accuracy (33.33% or 1/3). We then smoothed the accuracy maps to
6-mm FWHM (note that there was no smoothing applied during
preprocessing). To reduce the number of comparisons across the
whole brain, we generated a mask using FSL’s MNI structural
atlas that masked out the cerebellum, brain stem, ventricles, oc-
cipital lobe, and white matter. We chose to exclude occipital lobe
because the stimuli were text-based and we controlled for the
number of characters in each statement string across conditions.

Finally, we conducted a group-level one-tailed t test against zero to
determine which voxels exhibited classification accuracy signifi-
cantly greater than chance. AFNI’s 3dClustSim Monte Carlo sim-
ulation determined a minimum cluster size of 87 contiguous voxels
to achieve corrected p � .05 given a voxelwise threshold of p �
.005.

Experiment 2 restricted analyses to the regions identified by
the searchlight classifier in Experiment 1. The linear CSVMC
classifier trained on one run of one class of groups and tested
the other class of groups from the run that was left out. The
partitioner iterated through both runs and averaged across the
folds to generate accuracy scores. We ran the classifier twice—
once training on arbitrary and testing on political groups and
once training on political and testing on arbitrary groups—and
averaged across both before testing against chance in each ROI
identified in Experiment 1.

Results

Behavior

In a prescan survey, Experiment 1 participants evaluated their
own arbitrary team (M � 70.80, SE � 3.06) much more positively
than the other team (M � 30.04, SE � 3.04), 95% confidence
interval (CI) [30.95, 50.56], t(22) � 8.62, p � .0001, d � 2.79. In
addition, Republicans (M � 5.00, SE � 0.68) were more socially
conservative than Democrats (M � 2.53, SE � 0.21), 95% CI
[1.37, 3.57], t(21) � 4.65, p � .0001, d � 2.21. Republicans (M �
5.83, SE � 0.40) were also more fiscally conservative than Dem-
ocrats (M � 3.53, SE � 0.29), 95% CI [1.18, 3.43], t(21) � 4.27,
p � .0003, d � 2.03. These analyses served as a manipulation
check on participants’ arbitrary group and political preferences.

Participants’ self-reported propensity to join and value groups
did not differ by team or political party, ps � .46. Furthermore, a
3 (in-group/out-group/neutral) � 2 (arbitrary team/political party)
multilevel model (treating participant as a random effect) on
response times (indicating where on the screen each statement
appeared) indicated no main effects of Group, F(2, 5384) � 1.284,
p � .277, or Category, F(1, 5384) � 0.003, p � .958, nor a
Group � Category interaction, F(2, 5384) � 0.154, p � .858.

In a prescan survey, Experiment 2 participants also evaluated
their own arbitrary team (M � 62.22, SE � 3.92) more positively
than the other team (M � 32.40, SE � 3.20), 95% CI [17.31,
42.33], t(19) � 4.99, p � .0001, d � 1.86. Thus, participants
exhibited a strong degree of arbitrary in-group favoritism across
both experiments. In contrast to Experiment 1, a 2 (in-group/out-
group) � 2 (arbitrary team/political party) multilevel model treat-
ing participant as a random effect on response times indicated a
significant main effect of Group, F(1, 2006) � 9.307, p � .002),
but not of Category, F(1, 2006) � 0.431, p � .512, and a marginal
Group � Category interaction, F(1, 2006) � 3.168, p � .075.
Specifically, participants were faster to identify in-group (M �
0.84, SE � 0.21) than out-group trials (M � 0.87, SE � 0.22).
Because Experiment 2 was purely confirmatory, and analyses were
restricted to the regions identified in Experiment 1 (in which there
was no response time difference across groups or categories), we
do not discuss these findings further.
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fMRI

First, we ran the two within-category classifiers on the data from
Experiment 1: train and test on arbitrary groups, and train and test
on political parties, respectively (see Table 1 for results). Both the
arbitrary team classifier and the political affiliation classifier iden-
tified regions of the MPFC—ventral and dorsal, respectively—and
inferior temporal gyrus (ITG) as regions in which group member-
ship could be decoded above chance. The arbitrary group classifier
additionally identified left anterior insula/inferior frontal gyrus and
pregenual anterior cingulate cortex (pgACC). The political affili-
ation classifier additionally identified two distinct clusters in right
middle frontal gyrus (MFG) and left superior temporal gyrus
(STG). Accuracy in these clusters did not differ by participant
gender, team, or political party.

Next, we examined whether multivoxel patterns associated with
distinguishing arbitrary teams could successfully decode political
party membership. A three-way classifier trained on arbitrary
teams and tested on political parties identified left anterior insula
(AI) and dorsal anterior cingulate cortex/middle cingulate cortex
(dACC/MCC; Table 1, Figures 2a,b) as brain regions supporting
cross-category group representation. Accuracy in these two clus-
ters did not differ by participant gender, team, or political party.

The classifier trained on political parties and tested on arbitrary
teams identified only left rostrolateral prefrontal cortex (RLPFC;
Table 1, Figure 2c). This cluster was directly anterior to, but did
not overlap with, the left AI cluster identified in the arbitrary-to-
political classifier. (At a voxel-wise threshold p � .05, 15.80% of
voxels overlap.) Again, accuracy in this cluster did not differ by
gender or team (ps � 0.54) but did vary as a function of political
party: Democrats were 4.12% above chance whereas Republicans
were only 0.13%, 95% CI [1.19%, 6.79%], t(21) � 2.97, p �

.0074, d � 1.41. Accuracies across these three regions are plotted
in Figure 2d.

We then extracted the confusion matrix for each cross-category
cluster to examine the precise pattern of hits and errors made by
the classifier (Figure 2e; note that these results are purely descrip-
tive; it is inappropriate to run another set of statistical analyses on
data from voxels selected by the pattern of interest). In this first
experiment there were three groups so chance classification �
33.3%. Across the dACC/MCC and AI, the success of the classi-
fier was driven mostly by the correct classification of in-group
targets (see first column of each matrix). That is, when the target
was an in-group member, the classifier guessed in-group correctly
42.9% (dACC/MCC) and 41.0% (left AI) of the time, the highest
hit rate in either of these region’s confusion matrices. In contrast,
classification success in the left RLPFC was driven by correctly
guessing in-group for in-group targets (38.0%) as well as neutral
for neutral targets (39.1%).

We then ran a confirmatory test of the same cross-category
classification accuracy in a separate sample of participants, who
explicitly categorized Rattler/Eagle/Democrat/Republican targets
as in-group and out-group members (again, there was no third
neutral out-group in this experiment). We restricted the analysis to
the dACC/MCC and left AI regions identified in Experiment 1 and
averaged across both cross-category classification accuracies (i.e.,
train on arbitrary, test on political as well as train on political, test
on arbitrary). In this second experiment, there were only two
groups so chance classification � 50%. We found that the patterns
in AI could distinguish in-group from out-group targets signifi-
cantly better than chance, accuracy � 59.38%, t(19) � 2.32, p �
.032, d � 0.52. In-group and out-group accuracies in dACC/MCC,
however, were not significantly different from chance in this new

Table 1
Classification Results for Four Classifiers

Classifier and region x y z Cluster size Accuracy %

Cross-category
Train on arbitrary, test on political

dACC/MCC 10 16 40 92 36.28
L AI �34 24 �2 89 36.49

Train on political, test on arbitrary
L RLPFC �40 49 �1 89 36.41

Within-category
Train on arbitrary, test on arbitrary

MPFC �2 50 �1 301 37.56
L AI/IFG �46 21 1 151 38.16
pgACC �2 34 0 106 37.47
L ITG �67 �22 �15 96 37.06

Train on political, test on political
DMPFC �8 37 44 402 37.15
R MFG 22 32 46 179 37.37
L STG �50 �44 17 136 37.07
R MFG 44 10 44 127 37.11
R ITG 57 �15 �21 97 36.84

Note. dACC/MCC � dorsal anterior cingulate cortex/middle cingulate cortex; AI � anterior insula; RLPFC �
rostrolateral prefrontal cortex; MPFC � medial prefrontal cortex; IFG � inferior frontal gyrus; pgACC �
pregenual anterior cingulate cortex; ITG � inferior temporal gyrus; DMPFC � dorsomedial prefrontal cortex;
MFG � middle frontal gyrus; STG � superior temporal gyrus. Cluster size reported in voxels (2 mm3).
Coordinates are in Montreal Neurological Institute (MNI) space; indicate center of cluster. Chance accuracy �
33.3%.
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sample, accuracy � 47.50%, t(19) � �0.59, p � .56. Accuracies
in the two clusters were also (marginally) significantly different
from one another, t(19) � 2.1391, p � .046, d � 0.64.

Discussion

Coalition-based cognition appears common across all human
cultures. Preference for own group members has also been docu-
mented across species ranging from rats (e.g., Ben-Ami Bartal,
Decety, & Mason, 2011) to chimpanzees (e.g., Wrangham, 1996).
Several candidate brain regions have previously been linked to
different dimensions along which in-group and out-group may be
represented (e.g., self-similarity). In contrast to those dimensions
that are uniquely social, we found that that general social group
concept representation appears to rely on circuitry that encodes
external stimuli’s functional or evaluative significance. The cur-
rent experiment allowed us to distinguish the neural substrates
associated with lower-level group-specific representations (e.g.,
Democrats vs. Republicans) from the neural substrates of higher-
level conceptual representations of “us” and “them.” Strikingly,
we found that abstract group representations in left AI generalize
to other samples of participants engaged in an explicit social
categorization task.

Group-Specific Representations

We used within-category classification (e.g., train and test on
arbitrary groups) to identify the neural substrates of group-specific
representation. The arbitrary team classifier identified MPFC and
pgACC as well as left IFG and ITG. The MPFC/pgACC finding is
particularly noteworthy because it is precisely these regions that
have been identified in research examining self/similar-other rep-
resentation overlap (e.g., Jenkins et al., 2008) as well as categori-
zation of in-group relative to out-group labels (Morrison et al.,
2012). Note, however, that the political party classifier identified a
different, nonoverlapping network of regions including, DMPFC,
two distinct regions of right MFG, left STG, and right IFG.

Why is there no overlap between these two maps? During the
training phase, the machine-learning algorithm weighs most heav-
ily the voxels that most strongly distinguish the groups in calcu-
lating the decision hyperplane, which is then used in the testing
phase. Because people have richer social knowledge about polit-
ical parties, the particular voxels that maximally distinguish among
Democrats, Republicans, and Constitutionals are different than the
voxels that distinguish among Eagles, Rattlers, and Bears.

These results may indicate that different psychological dimen-
sions maximally distinguish in-group, neutral out-group, and

Figure 2. dACC/MCC (x � 8; A) and left AI (z � �3; B) identified by the classifier that trained on arbitrary
teams and tested on political parties. C: Left RLPFC (z � 0) identified by the classifier that trained on political
parties and tested on arbitrary teams. D: Average accuracy scores by cluster. E: Confusion matrices by cluster.
With three groups, chance classification � 33.3%.
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threatening out-group target representations depending on the so-
cial category under consideration. In other words, we cannot
conclusively rule out the possibility of category-dependent task
discrepancies. Despite the fact that the task instructions were the
same across categories, participants may have attended to different
features or exemplars in the arbitrary versus political category
conditions. For example, because participants were told they were
assigned to their arbitrary teams based on their personality profiles,
similarity to the self may have been the most diagnostic dimension
along which to differentiate the targets in the arbitrary group
classifier. This was not the case in the political party classifier,
which selected a different network (perhaps because the stimuli
activated representations of specific Democrats and Republicans).
Nevertheless, these data suggest that at group-specific levels of
representation, participants possess unique associated neural
codes, which are distinct from one another and distinct from
generalized group concept representations.

Generalized Group Concept Representations

Across dACC/MCC and AI, patterns of brain activity distin-
guishing between arbitrary teams, created in the lab, successfully
discriminated targets’ political parties. We also replicated cross-
categorization classification in left AI in a separate sample of
participants completing an explicit social categorization task.

Classification accuracy in these regions was driven by sensitiv-
ity to in-group targets. This result is consistent with the social
psychological research indicating that in-group preference is more
central than out-group derogation to social identification processes
(Balliet, Wu, & De Dreu, 2014). This evaluative preference is
highly predictive of discrimination, stereotype activation, trust,
and empathy, among many other psychological and behavioral
manifestations of intergroup bias (Hewstone, Rubin, & Willis,
2002). Furthermore, many experiments indicate in-group prefer-
ence is activated automatically (Nosek, Greenwald, & Banaji,
2007) suggesting that evaluation or valence is the key dimension
along which generalized social group representations are orga-
nized.

The salience of group identities is context-dependent and alli-
ances are dynamic. As such, humans have to be immediately
responsive to recategorization of any given target. Anatomically,
dACC/MCC and AI are reasonable candidates to support social,
motivationally relevant representations and to regulate subsequent
behavior given their anatomical connectivity with sensory and
motor systems (Seeley et al., 2007; Uddin, 2015; Vogt, 2005).
Future experiments could examine how these networks respond to
flexible recategorization. For instance, if a player is traded to the
other team, are the patterns of activation used to represent out-
group members now applied to the former in-group members?

In contrast, the classifier trained on political parties and tested
on arbitrary teams identified only left RLPFC, which shared 16%
overlapping voxels with the left AI cluster at a lower significance
threshold. By some accounts left RLPFC is central to relational
integration (Christoff et al., 2001; Kroger et al., 2002). Specifi-
cally, left RLPFC appears to play a domain-general role in inte-
grating the higher-order relationships between task-relevant
knowledge representations (Bunge, Helskog, & Wendelken, 2009;
Westphal, Reggente, Ito, & Rissman, 2016). For example, left
RLPFC is engaged more when participants evaluate the concor-

dance of an analogy (e.g., “shoe is to foot as glove is to hand?”) as
compared to when they complete an analogy (Wendelken et al.,
2008). One highly speculative explanation is that participants were
spontaneously evaluating the concordance of the groups across
categories (e.g., Eagles:Democrats?); however, we have no means
of testing whether this is the case in the current dataset.

Why did the classifier trained on political party and tested on
arbitrary groups identify a different (albeit partially overlapping)
region of frontal cortex relative to the other cross-category classi-
fier? As we note above, the dimensions of social knowledge that
maximally distinguish among Democrats, Republicans, and Con-
stitutionals may be different than the dimensions that distinguish
among Eagles, Rattlers, and Bears. That said, the party-to-team
cross-category classifier was nevertheless successful, indicating
that even when different attributes are driving classification, those
attributes are represented similarly across different kinds of in-
group, neutral out-group, and threatening out-group targets.

Fundamental Psychological Dimensions Distinguishing
Generalized Us From Them

Though these experiments were not designed to identify which
specific psychological dimensions distinguish representations of
the generalized concepts of us and them, the present findings aid in
narrowing the hypothesis space. Classification success was pri-
marily driven by the correct identification of in-group targets, such
that threatening and neutral out-groups were most often confused
for one another. These results do not support a threat-driven
classification scheme, which predicted that in-group and neutral
out-groups would be most often confused for one another, or a
familiarity-driven classification scheme, which predicted that in-
group and threatening out-groups would be most often confused. If
the fundamental dimension distinguishing the concepts of us and
them were similarity to one’s self, we would predict a cross-
categorization map that included MPFC/pgACC (as we observed
in the within-arbitrary team classifier).

The behavioral results speak to the likelihood of two further
variables as the fundamental dimensions driving classification
success. The response time data from Experiment 1 indicated that
the in-group trials (in either category) did not engender signifi-
cantly faster or slower responding than out-group trials. These
results indicate that accessibility is unlikely to be a good candidate
dimension driving the distinction between in-group and out-group
concepts. Further, the self-reported team evaluation scores re-
vealed that participants did not feel more positively about the
in-group than they felt negatively about the out-group. Specifi-
cally, in Experiment 1 the average in-group team evaluation was
21 points above the midpoint of the scale, and the average out-
group team evaluation was 20 points below the midpoint of the
scale—making them roughly equivalent in terms of affective sig-
nificance. Thus evaluative asymmetry (feeling more strongly about
the in-group than the threatening out-group, irrespective of va-
lence) is an unlikely candidate dimension as well.

Our results suggest that valence, specifically functional signif-
icance or evaluation (i.e., will this stimulus help me or not?), is a
plausible candidate for the dimension distinguishing representa-
tions of us and them. This hypothesis is consistent with our results
as well as decades of theorizing that emphasizes the priority of
functional relations (i.e., whether people or groups are cooperative,
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competitive, or independent in their outcomes) as an organizing
principle for group-related perception and cognition (Campbell,
1958; Fiske, Cuddy, & Glick, 2007; Sherif, Harvey, White, Hood,
& Sherif, 1961; Tajfel & Turner, 1979; see Cikara & Van Bavel,
2014, for a review).

Future Directions

Although our results suggest that social group concepts rely on
domain-general circuitry associated with encoding stimuli’s va-
lence or functional significance, a more precise test would include
both social and nonsocial stimuli that varied along these dimen-
sions. For example, future experiments could include trials of
positively and negatively valenced stimuli that hold little instru-
mental value as well as stimuli that have high versus low instru-
mental value to determine whether the same regions that classify
the general concepts of us and them also classify nonsocial targets
that vary along these dimensions. It is possible that these social and
nonsocial representations overlap in space but are still associated
with discriminable patterns of activation.

Perhaps the most interesting aspect of these results is that the
classifier exhibited an overinclusion bias (i.e., guessed “in-group”
more often than any other label). On one hand this could be
interpreted as a maladaptive tendency: surely it would be safer to
err on the side of assuming everyone is an out-group member until
one is certain of a target’s in-group membership. However, in their
daily lives, people tend to interact more often with individuals who
are similar to themselves along numerous demographics and di-
mensions (McPherson, Smith-Lovin, & Cook, 2001). Given the
statistical regularities of individuals’ self-selected environments, it
makes sense that their priors would bias them to assume other
novel targets are in-group members until they receive information
that indicates otherwise. Note also that even though the groups in
question are competitive, they are not associated with threats to
individuals’ physical well-being. Future experiments should ex-
amine whether running the same experiment with physically
threatening groups, or in social contexts characterized by threats to
physical safety (e.g., Gaza) would yield the opposite effect: an
overexclusion bias. Finally, we only used political and arbitrary
groups—and our Experiment 2 did not include Republican partic-
ipants. Liberals and conservatives exhibit differences in negativity
bias (e.g., Hibbing, Smith, & Alford, 2014) and the extent to which
they see themselves as similar to in-group members (e.g., Stern,
West, & Schmitt, 2013). Thus participants could be weighing
target features differently when representing in-group and out-
group members depending on their political orientation (though we
did not observe differences in classification accuracy by political
party). To put the generalizability property to an even more strin-
gent test, future experiments should test other orthogonal coali-
tional boundaries including demographic (e.g., race, nationality)
and self-selected groups (e.g., religion, sports team affiliation).

Conclusion

The current work suggests that humans possess a common
neural code for the concepts in-group and out-group, regardless of
the category by which group boundaries are instantiated. These
findings both (i) shed light on neural circuits that have been
proposed by evolutionary psychology to support coalitional con-

cepts and (ii) generate novel hypotheses at the intersection of
social cognition, biological anthropology, and cognitive neurosci-
ence.
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